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Abstract

We study the effects of thickness and competition on the equilibria of ride-sharing
markets, in which price-setting firms provide platforms to match customers (“riders”)
and workers (“drivers”). To study thickness, we vary the number of potential workers
(“the labor pool”) and, to study competition, we change the number of firms from
one to two. When the market is sufficiently thick, wage and workers’ average welfare
decrease with size of the labor pool. Otherwise, wage and workers’ average welfare
increase with the labor pool, reversing the prediction by the law of demand. Intuitively,
workers are “complements” in a thin market –their wage and average welfare goes up
with the labor pool– but they become “substitutes” and compete with each other in a
thick market.

We demonstrate that a similar insight holds in another context: consider improving
the matching technology, i.e. improving the matching algorithm of the firm so that
service quality goes up, given the same labor supply. We show that improving the
matching technology can be like increasing the labor pool, benefiting workers when
the market is not sufficiently thick, while otherwise reducing their wage and average
welfare. In other words, matching technology complements labor in a thin market, but
substitutes it in a thick market.

We study competition by comparing the monopoly and duopoly equilibria. We find
that competition benefits workers: their wage and average welfare are always higher in
the duopoly equilibrium. However, the effect of competition on price and customers’
average welfare depends on thickness, because firms compete for workers as well as
for customers. When the market is not sufficiently thick, there is an adverse effect of
competition on customers: price is higher and customers’ average welfare is lower in
the duopoly equilibrium.
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1 Introduction

Ride-sharing platforms (Uber and Lyft) and online labor platforms (Upwork and Taskrabbit)

are examples of two-sided platforms which match service providers (workers) on one side

with service requesters (customers) on the other side. Such platforms invest heavily in

improving service quality for customers, often, by expanding their labor pool, as well as by

improving their resource allocation strategies to provide better matches or recommendations.

Understanding the impact of these activities on both sides of the market is a central concern

to these platforms and also to the market regulators. We study these effects in the context

of ride-sharing markets.

We study the effects of thickness, improved matching technology, and competition on the

equilibria of ride-sharing markets, in which price-setting firms provide platforms to match

customers (“riders”) and workers (“drivers”). To study thickness, we vary the number of

potential workers (“the labor pool”). By improved matching technology, we mean improving

the matching algorithm used by the firm so that service quality goes up, given the same labor

supply. Finally, by competition we mean entrance of a rival firm.

Varying the size of the labor pool leads to both expected and unexpected implications.

By analogy to a classical marketplace, increasing the labor pool increases supply and makes it

cheaper to provide any level of service, so customers’ average welfare generally goes up. What

is different about the ride-sharing market is that a larger labor pool can lead the firm to offer

higher wages to workers, so that the workers’ average welfare increases, too. The intuition

for this reversal is founded in the observation that increasing size of the labor pool pressures

the equilibrium wage in two ways. First, increasing the labor pool increases the number of

workers at any wage, raising quality (for example, through shorter wait times for riders) and

pushing up the firm’s marginal expenditure to improve quality. Second, increasing the labor

pool also reduces the firm’s marginal expenditure to acquire an additional worker, pushing

down the firm’s marginal expenditure to improve quality. We show that this trade-off can

go either way, and a larger labor pool can make it profitable for the firm to offer a higher

wage.

We study this trade-off and its determinants in Section 4. We show that when the market

is not sufficiently thick, workers’ wage, their average welfare, and their average employment

time increase as the labor pool increases (Theorem 4.3). So, workers are “complements” in

a thin market, whereas they become “substitutes” and compete with each other in a thick

market. (This suggests that in a thin market it can be easier for the firm to attract workers.)

To see the intuition, recall the trade-off that we discussed above. When the market is not
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sufficiently thick, service quality is low and marginal increase in quality for an increase in

wage is high, tilting the trade-off towards increasing wage.

Besides expanding the labor pool, platforms can also improve service quality by improving

their resource allocation strategies. We study the effect of improved matching technology in

ride-sharing markets, i.e. improving the matching algorithm of the firm so that service quality

goes up given the same labor supply. We show that improving the matching technology can

be like increasing the labor pool, benefiting workers when the market is not sufficiently

thick, while otherwise reducing their wage and average welfare. In other words, matching

technology complements labor in thin markets, and substitutes it in thick markets. Section 5

studies this effect and its determinants.

We study competition by comparing monopoly and duopoly and find that competition

benefits workers: their average welfare and wages are always higher in the duopoly equi-

librium. However, the effect of competition on the price and customers’ average welfare

depends on thickness: when the market is sufficiently thick, price is lower and customers’

average welfare is higher in the duopoly equilibrium; but when the market is less thick, price

is higher and customers’ average welfare is lower.

The intuition is simple. There are two main forces affecting the duopoly price. Competi-

tion over customers pushes the customer price down, but there is another effect of competi-

tion that is adverse to customers: competition over workers raises the firms’ costs, pushing

the customer price up. The net effect of competition on price depends on the strength of

these forces. When the market is thin, competition over workers dominates competition over

customers, and the duopoly price for customers is higher than the monopoly price. We study

this effect and its determinants in Section 6

Finally, we point out to some of the prominent features of ride-sharing markets which are

detrimental to the effects that we introduce. A feature related to the effect of competition is

that the multihoming side (workers, who can accept ride-requests from both firms) cannot

drive for both firms at the same time. The significant consequence is that competition always

benefits the multihoming side but has an adverse effect on the singlehoming side (customers)

in thin markets, as shown by Theorem 6.6 and Theorem 6.7. This is in contrast to the

results in the classic two-sided platforms literature, where the singlehoming side typically

benefits from competition, and the multihoming side could have all its surplus extracted, as

firms do not directly compete for them [Armstrong 2005, Lam 2017]. Thereby, fundamental

equilibrium properties in two-sided platforms can depend on the marketplace design details.

Another feature of ride-sharing markets that plays a crucial role in the effects of thickness
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and improved technology is convexity of the waiting time of a customer in the number of

available idle workers: the marginal reduction in waiting time for an additional idle worker

is decreasing in the number of idle workers. This and some of our other assumptions are

discussed in Section 7. Similar convexities could be present in other two-sided marketplaces

as well, deriving effects similar to the ones that we introduce here. However, ride-sharing

markets are the only marketplace where we have established the existence of these effects

at this level of generality. This highlights the prominent role of waiting times and their

convexity in the number of idle workers in ride-sharing.

2 Related work

In this section we review some of the relevant work in the literature covering two-sided

platforms, the economics of networks and the network effects, and dynamic pricing.

The literature on platform competition and two-sided markets offers generic insights on

how the market equilibria change under different governance structures (e.g. a social welfare

or a profit maximizing planner) and highlights the significance of some of the key structural

components of two-sided markets, such as user heterogeneity and multi-homing and single-

homing of users, among others. Some of these works are reviewed below. They consider

different comparative statics than we do in this study. Also, they are generally tailored for

different market structures, such as credit card markets. Such differences in design details

can create significantly different equilibrium properties, as we briefly explained in Section 1.

[Rochet and Tirole 2003, Tirole and Rochet 2006] introduce a generic framework and

use it to compare the end-user surpluses for different planners, study the determinants of

the business model (the favorability of the price structure on each side of the market), and

investigate different membership structures.

[Weyl 2010] highlights the role of user heterogeneity in normative properties and com-

parative statics of two-sided markets. He provides a reformulation of a platform’s problem

that allows for user heterogeneity in income or scale, and is in terms of the allocation choice,

rather than prices. [White and Weyl 2010] suggest Insulated Equilibrium as a novel equi-

librium notion, and show that under this notion, the impact of competition (defined by the

level of product differentiation) on efficiency depends on heterogeneity in users’ valuations

for network effects.

[Caillaud and Jullien 2003] and [Armstrong 2005] elaborate the role of single-homing and

multi-homing users on the market equilibria and users’ surplus, and show that the single-
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homing side is treated favorably. [Armstrong and Wright 2007] argue that multi-homing

users could result in “competitive bottlenecks” in a market and study exclusive deals for

preventing multi-homing. More precisely, they show that when platforms are viewed as

homogenous by multi-homing users but heterogeneous by single-homing users, they do not

compete directly for multi-homing users, and instead, choose to compete for them indirectly

by subsidizing single-homing users to join. In contrast, in this paper we find competition to

be beneficial to the multi-homing side (workers), while being beneficial to the single-homing

side only when the labor pool is sufficiently large.

There is also extensive literature on network externalities and economics of networks;

[Shy 2011] gives a brief survey. One of the generic intuitions is that expanding both sides

of a platform simultaneously could benefit both sides (compared to the effect of thickness

in this work, where expanding the labor side alone is beneficial to the same side in thin

markets). Several work in this area study competition between firms in the presence of

network externalities. [Katz and Shapiro 1985] show that firms’ joint incentives for product

compatibility are lower than the social incentives. [Economides 1996] explains that the

existence of network externalities cannot be claimed as a reason in favor of a monopoly market

structure, as their presence “does not reverse the standard welfare comparison between

monopoly and competition”.

[Cournot et al. 1927] show that non-integrated dual monopolists can quote higher prices

than a single vertically integrated monopolist in the pricing of two perfectly complementary

goods. The intuition is that dual monopolists face a less elastic demand and quote higher

prices than a single vertically integrated monopolist. (An effect also known by “double-

marginalization”.) [Economides 1999] extends this result by showing that the product qual-

ity also will be higher under a single integrated monopolist when the quality choices are

endogenous and the goods are perfect complements. We remark that the adverse effect of

competition on customers that we introduce arises not because of the complementarity of

the goods (in fact, the two goods provided by the two firms are substitutes), but because of

the competition over the multihoming side.

There is also literature that explains the benefits of dynamic or surge pricing in ride-

sharing markets. [Banerjee et al. 2015] conclude that although dynamic pricing does not

necessarily yield higher performance than static pricing, it provides the benefits of optimal

static pricing even under imperfect information about the system parameters. [Castillo et al.

2017] show that dynamic pricing could be used to avoid inefficient equilibria with long pickup

times. Such equilibria could exist when the firm uses a greedy matching policy. These papers,
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however, set aside the long-run effects of thickness or competition on the platform’s strategy.

This paper is the first that we know of to study these interdependent effects.

3 Setup

The model is a dynamic steady-state model. A single firm intermediates between customers

and workers. Potential customers have an arrival flow, the rate of which is taken to be

constant over time, and equal to 1. There is also a mass m of workers, which we call the

labor pool. The firm makes matches between customers and workers. Immediately upon

arrival, a customer either requests service or departs the market. When a customer requests

service, the firm matches her to a worker in the set of idle workers who accept the firm’s

wage offer. The firm selects the worker uniformly at random. When the firm makes a match

between a customer and a worker, the worker serves the customer for a unit of time, and

after that, the worker returns to the pool of workers where she waits for a new match and

the customer departs the market. The firm posts a price p and a wage w, which are the

payment from a customer to the firm and the payment from the firm to a worker, upon a

match.

Next, we discuss the decision problems of the workers, the customers, and the firm.

Workers

Each worker has an outside option r ∼ F , which represents the opportunity cost of the

worker: the worker earns r per unit of time whenever she is not serving a customer.1 The

workers therefore have a simple decision problem: a worker with outside option r accepts

service requests from the firm iff r ≤ w. A worker who would decide to accept requests from

the firm is called a viable worker. The total mass of viable workers is therefore equal to

mF (w), which we typically denote by λ, when m,w, F are clearly known from the context.

We sometimes refer to a viable worker as a worker who has joined the firm.

The set of viable workers is partitioned into two subsets, namely busy and idle workers.

The busy workers are the workers who are serving customers presently. The idle workers

are the rest of the viable workers. We denote the mass of busy and idle workers with b, i,

respectively.

1Our main finding also holds under the assumption that the worker earns the outside option r only when
she does not join the firm, i.e. when she never accepts ride requests from the firm.
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Customers

Each customer has a valuation v ∼ G for the service. A customer requests service (i.e. joins

the firm) iff v > p+ c(i), where p is the price posted by the firm, and c : R+ → R+ is a cost

function where c(i) denotes the cost incurred by the customer given than there are i idle

workers available in the pool upon the customer’s request. For example, one may consider

c(i) as (the monetary equivalent of) the customer’s waiting cost. We assume that c is a

decreasing function. Payoff of the customer from joining the firm is equal to v − p− c(i).
For any fixed p, w offered by the firm, we can determine the rate of customers who join

the firm, namely k. To this end, we write the market clearing condition according to which

the rate of rides supplied is equal to the rate of rides demanded

k = 1−G(p+ c(mF (w)− k)). (3.1)

On the right-hand side we have the rate of customers who join the firm, i.e. Pv∼G [v > p+ c(i)].

Note that the left-hand side is strictly increasing in k, while the right-hand side is decreasing

in k (holding all other variables fixed). This implies that there is a unique k satisfying the

above equation. We typically write this k as a function of p, w and denote it by k(p, w).

We use k(p, w), λ(p, w) respectively to denote the rate of customers who join the firm and

the mass of viable workers under price p and wage w. When p, w are clearly known from the

context, we just use the notation k, λ.

Firm

The firm posts price and wage in order to maximize its “objective function”. The main

objective that we consider for the firm is profit-maximization.

Profit maximizing firm Under a fixed choice of p, w, the firm’s profit function is defined

by Π(p, w) ≡ (p − w) · k(p, w). The firm’s objective is maximizing profit by choosing price

and wage, i.e. the firm’s problem is defined by

max
p,w≥0

Π(p, w)

s.t. k(p, w) ≤ mF (w). (3.2)

(3.2) is a capacity constraint that states the mass of viable workers has to be at least as

much as the rate of customers who join. The optimal solution to the firm’s problem is called
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the monopoly equilibrium. We say a monopoly equilibrium exists at m when the firm serves

a positive rate of customers at its optimal solution when given a labor pool of size m. (We

emphasize that this definition excludes optimal solutions at which the firm’s profit is equal

to zero.) We say that an equilibrium is non-binding if its capacity constraint does not bind,

i.e. when the number of idle workers is positive.

We also extend some of our results and observations to when the firm’s objective is wel-

fare maximization, e.g. maximizing some combination of customers’ and workers’ welfares.

Unless otherwise stated, the firm is considered to be a profit maximizer.

Assumptions

Suppose that F,G : [0, 1] → [0, 1] are strictly increasing CDFs and are of the class C4.2

Furthermore, through out the paper, we assume that F has a decreasing PDF. The inter-

pretation is that there are fewer workers with higher outside options. (Assumptions and

extensions are discussed in Section 7)

We assume that the function c : [0,∞) → [0,∞] is of the class C4, decreasing, strictly

convex, and that c(0) = 1. We call such a function a standard cost function.

Observe that under the assumption c(0) = 1, no customers will join the firm if there

are no idle workers available, because the support of G is the unit interval. Therefore, this

assumption ensures that all monopoly equilibria are non-binding. Convexity of c has a simple

interpretation: each additional idle worker decreases the waiting cost less than the previous

one.3 The smoothness assumptions on c, F,G could be relaxed, as some of our proofs require

lower differentiability classes; the details about such relaxations are omitted.

Existence and uniqueness of the equilibrium A monopoly equilibrium exists when m

is not “too small” (Theorem 4.3), and is generically unique, in the following sense. The profit

function, Π(p, w), is bounded and continuous (Lemma B.7). This guarantees the existence of

at least one local maximum. Informally speaking, there are generically no two local maxima

that give the same profit, which means that the global maximum is generically unique.4

Throughout the entire draft, whenever we refer to a monopoly equilibrium in a formal

statement, its existence and uniqueness are guaranteed, and the proof of it is included in the

2Recall that a function is of the the class Cn if its first n derivative exist and are continuous.
3Convexity of the cost function means that having one more idle worker is much more effective in de-

creasing the waiting cost when there are 10 idle workers available, than when there are 1000 idle workers
available.

4When G is a regular distribution, a stronger property holds: uniqueness of the local maximum.
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proof of that statement.

We use p(m), w(m), k(m) to denote the equilibrium levels of price, wage, and customers’

entrance rate as a function of m. When m is clearly known from the context, we sometimes

use the notations p∗, w∗, k∗, respectively.

4 The effect of thickness

We begin this section with two examples about the effect of thickness on the equilibrium

wage. After discussing the intuition behind the observed non-monotonicity in wage, we do a

simple mathematical exercise in Subsection 4.2 to formalize the intuition. This simple exer-

cise also explains the crucial role of the convexity of the cost function in the non-monotonicity

of equilibrium wage. Finally, we extend the non-monotonicity observed in the example by

showing that the equilibrium wage, workers’ average welfare, and their average employment

time increase with labor pool when the labor pool is not sufficiently large. (Subsection 4.3)

4.1 Examples

Monopolist

In this example, we plot the wage offered by a monopolist when the cost function c is an

exponential cost function, i.e. c(i) = e−γi. We observe that the equilibrium wage increases

with size of the labor pool when size of the labor pool is smaller than a certain threshold.

Figure 1: Equilibrium wage as a function of size of the labor pool (m); γ = 1 and F,G are
the uniform distribution.

What is the intuition? As the size of the labor pool increases, the equilibrium wage is

pressured by two forces. The first force works in favor of increasing wage: when m goes up,
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more workers join the firm for the same increase in wage.5 This reduces the firm’s marginal

expenditure to acquire labor, which in turn pushes down the firm’s marginal expenditure to

improve service quality. This creates a force in favor of increasing the wage, which we call

the upward force.

The second force is the downward force: as m goes up, the number of idle workers goes

up as well (holding all else fixed).6 Therefore, an additional worker decreases the waiting

cost less than when size of the labor pool was smaller (because of the convexity of the cost

function). This force pushes up the firm’s marginal expenditure to improve service quality,

and thereby creates a force in favor of decreasing the wage. Whether the wage goes up or

down depends on which force is stronger.

We pin down the mathematical expressions corresponding to the upward and downward

forces in a simple exercise in Subsection 4.2. We will see that when m is “large”, waiting costs

are low and additional idle workers do not decrease waiting costs much; the downward force

is strong and therefore the equilibrium wage decreases with the labor pool. (Subsection 4.3)

Social planner

In this section, we repeat the same exercise that derives the law of demand, but for the case

of ride-sharing markets. Figure 2 presents the typical proof-by-picture for the law of demand.

The equilibrium level of wage is determined at the intersection of the inverse demand and

supply functions, and it falls down as the labor supply goes up.

Figure 2: The law of demand

5To give a simple example, suppose that in a pool of 1000 workers, increasing wage by 1 cent convinces
10 more workers to join the firm. In a pool of 2000 workers, the same increase of 1 cent would convince, e.g.,
20 more workers to join.

6This is easy to observe when k is held fixed. Even when we allow k to change endogenously as m changes
(while holding price and wage fixed), the number of idle workers always go up for a marginal increase in m.
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In Figure 3, we do the same exercise, but tailored for our model. Here, the inverse demand

and inverse supply functions take two arguments as their input: the mass of viable drivers

(λ) and the rate of customers who join (k). For expositional simplicity, we have supposed

that the firm is a social planner and always sets price equal to wage. The exact objective

function of the firm is defined later.

Concavity of the inverse demand function is a direct consequence of the convexity of

the cost function c (see Figure 3(a)). The intersection of the inverse demand and inverse

supply functions gives a continuum of equilibria (Figure 3(b)). To be able to proceed with

our comparative statics, we choose a selection rule that selects one of these equilibria. For

example, we consider the selection rule that chooses the equilibrium that serves the highest

rate of customers. (The point corresponding to this equilibrium is observable in Figure 3(b))

As labor pool goes up, the inverse supply function shifts down. (Figure 3(c)) It can be

observed that the level of wage at the equilibrium chosen by our selection rule goes up. The

same exercise could be repeated for other planners as well.

(a) Inverse demand function (b) The inverse demand and inverse supply
functions

(c) The added surface (green color) corre-
sponds to the inverse supply function at
the higher m.

Figure 3

4.2 A mathematical exercise for capturing the upward and down-

ward forces

We start this exercise by presenting an intuitive sufficient condition, and also a necessary and

sufficient condition for the wage to go up with labor pool. Some of our results also hold when

the firm is a social planner. In such cases, we refer to the related sections in the appendix.

For expositional simplicity, we first suppose that F,G are the uniform distribution over the

unit interval. After that, we relax the distributional assumptions and observe that the same

identical sufficient condition still holds.
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After defining some notation, we state the two conditions and the intuition behind them.

With slight abuse of notation, define the cost function c(mF (w)− k) as a function of three

variables, m,w, k as follows:

c(m,w, k) = c(mF (w)− k).

This definition is used in defining the cross-partial

cm,w ≡
∂c(m,w, k)

∂m∂w
.

Note that cm,w takes arguments m,w, k as its input. This cross-partial is the key part of the

two conditions that we will present.

Recall that we use variables p(m), w(m), k(m) to denote the equilibrium values as a func-

tion of m. When m is clearly known from the context, we sometimes use p∗, w∗, k∗, instead.

By the usual convention, p′(m), w′(m), k′(m) denote the derivatives of the equilibrium values

with respect to m. When such derivatives are used in a formal statement, their existence

is guaranteed by convention, and the proof of existence is included in the proof of that

statement.

We are now ready to state the promised sufficient condition.

Proposition 4.1 (Sufficient condition). Let F,G be the uniform distribution. Then, there

exists m0 such that a monopoly equilibrium exists iff m > m0. Moreover, the equilibrium is

unique, and

cm,w(m,w∗, k∗) < 0⇒ w′(m) > 0.

We remark that the same identical condition remains sufficient if the planner is a social

planner. Before we discuss the intuition, we give an interpretation for the cross-partial in

simple words. The partial cw could be interpreted as minus marginal revenue per ride of

increasing wage: its output is a negative quantity that gives the reduction in the waiting

cost for a marginal increase in wage, which could be charged to customers, and therefore

is called the marginal revenue per ride.7 The condition cm,w < 0 states that the marginal

revenue per ride of increasing wage goes up with m.

Intuition We provide an intuition based on the notions of the marginal cost and marginal

revenue per ride of an increase in wage. (We remark that the same identical condition given

7Note that we are distinguishing between the terms revenue and profit. By the usual convention, revenue
does not include service costs, but profit does.
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in Proposition 4.1 remains sufficient if the planner is a social planner, where the mentioned

marginal revenue and marginal cost functions would not be relevant.) The marginal cost

per ride of an increase in wage is 1 (holding k fixed). Denote this quantity by MC ≡ 1. On

the other hand, the marginal revenue per ride of an increase in wage is −cw(m,w, k): when

wage goes up, waiting times go down, and therefore the monopolist can charge customers a

higher price without changing their payoffs; the marginal amount that can be charged by the

monopolist is −cw(m,w, k).8 Denote this quantity by MR. At the monopoly equilibrium, we

always have MR = MC, because otherwise, the monopolist can increase its profit by changing

both price and wage by a small amount ε. (This is formally proved in Subsection B.1) To

understand how a change in size of the labor pool, m, affects equilibrium wage, we should

understand how a change in m affects MR,MC. The idea is that if ∂MR
∂m

> ∂MC
∂m

= 0, then

the equilibrium wage increases with m. (See Figure 4 for an example) In simpler words, this

condition says that a marginal increase in m has a positive impact on the marginal profit

per ride of increasing wage. In what follows next, we make this intuition precise.

Figure 4: Plotting MR and MC as functions of w while increasing m by ε = 0.02 and
holding k fixed at its equilibrium value at m. m = 1.8 and c is the exponential cost function
c(i) = e−i. The intersection of MC and MR(m, ·) gives the equilibrium wage at m = 1.8.

First, observe that ∂MC
∂m

= 0. To compute ∂MR
∂m

, we write MR as a function of three

variables in the natural way, and then compute the partial as follows:

8In other words, this quantity is just the negative of the marginal rate of substitution of wage for price
on any iso-quant of the customer’s payoff function, u(v) = v − p− c(i) for a customer with valuation v.
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Therefore, ∂MR
∂m

> ∂MC
∂m

holds iff λc′′(i) + c′(i) < 0. But the latter condition is just the

sufficient condition given in Proposition 4.1, because

cm,w(m,w, k) = ∂
mc′(mw − k)

∂m

= c′(i) +mwc′′(i)

= c′(i) + λc′′(i).

Now we can pin down the upward and downward forces that were discussed briefly earlier

in Subsection 4.1; they correspond to the two terms in −c′(i)−λc′′(i). The first term, −c′(i),
corresponds to the upward force: as m goes up, more workers will join the firm for the

same increase in wage. The term −c′(i) captures this effect as it is the coefficient of m in

MR = m · (−c′(i)). Note that this term has a positive sign and works in favor of satisfying

the sufficient condition (unlike the second term which has a negative sign). The second term,

−λc′′(i), corresponds to the downward force: as m goes up, the number of idle workers also

goes up. Therefore, an additional worker decreases the waiting cost less than when m was

smaller, by the convexity of c(i).

Convexity of the cost function c has a crucial role in this mathematical exercise and

in non-monotonicity of the equilibrium wage. When c is concave or affine, the equation

MR = MC does not hold anymore, because the monopoly solution would not be an interior

solution of the firm’s profit maximization problem, as we discuss in Section 7. There, we see

that the monopolist employs just enough workers to provide the lowest possible waiting time

for customers, which would imply that the equilibrium wage decreases with the labor pool.

Section 7 also discusses the convexity assumption as an inherent characteristic of ride-sharing

markets.

We finish the discussion of this exercise with two remarks. First, we can repeat the same

exercise even when the uniformity assumptions on F,G are dismissed; Subsection B.3 shows

that a similar sufficient condition holds for general distributions. Second, the necessary and

sufficient condition is quite similar to the sufficient condition. The difference is that the
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right-hand side (0) is replaced with a positive term, which captures the effect of changes in

k on the equilibrium wage. These changes were ignored in the sufficient condition.

Proposition 4.2 (Necessary and sufficient condition). Let F,G be the uniform distribution.

Then,

cm,w(m,w∗, k∗) <
k′(m)

m(w∗ − k′(m))
⇔ w′(m) > 0.

4.3 The welfare effects of thickness

Here, we will show the equilibrium wage, workers’ average welfare, and their average em-

ployment time all increase with the labor pool when the labor pool is not too large.

First, we formally define the notions of average employment time and workers’ average

welfare, which will be used in the theorem. Generally, we use x(m) to denote the equilibrium

value of a parameter x as a function of m, e.g., w(m) denotes the equilibrium wage. Let the

average employment time of workers be defined as e(m) ≡ k(m)
λ(m)

. Also, define the workers’

average welfare as their per round average earnings from wage and outside options: 9

uW (m) ≡ 1

F (w(m))
·
∫ w(m)

0

(w(m) · e(m) + r · (1− e(m)) · F ′(r) d r. (4.1)

For example, when F is the uniform distribution, the above expression simplifies to

uW (m) =
1

2
·
(
w(m) +

k(m)

m

)
,

which has a simple interpretation: the average worker always earns her outside option r =
w(m)

2
. In a fraction e(m) of the time when she is serving a customer, she also earns an

additional amount of w(m)− r. The uniformity assumption is not made in the theorem that

follows.

Theorem 4.3. There exists m such that a monopoly equilibrium exists at m iff m > m, and

there exists m̂ > m such that for all m ∈ (m, m̂), w′(m), e′(m), and (uW )′(m) are positive.

In words, Theorem 4.3 says that when the labor pool is not too large, workers do not

compete with each other, and increasing the labor pool increases their average welfare,

wage, and average employment time. However, when the labor pool becomes sufficiently

9The theorem that we will present also holds for some other welfare-related notions, such as per round
average earnings from wage.
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large, workers compete with each other, and all these parameters decrease with the labor

pool. Intuitively, workers are complements in a thin market, but they become substitutes in

a thick market.

One might also be interested in considering other measures of welfare. A possible example

is a measure that excludes the earnings from outside options in (4.1) and only considers the

earnings from wage. The above result holds for this measure as well.

5 Matching technology

Aside from increasing the labor pool, platforms could improve their service quality by improv-

ing their resource allocation strategies. We study the effect of improved matching technology,

i.e. improving the matching algorithm of the firm so that service quality goes up (waiting

times go down), given the same labor supply. First, we demonstrate the effect of improved

technology in an example, where we observe that improving the technology increases the

wage and workers’ average welfare when the labor pool is not large, and decreases these

parameters when the pool becomes sufficiently large. In other words, matching technology

complements labor in thin markets, and substitutes labor in thick markets. We present the

intuition for this effect right after the example, and then set up a general model for improving

matching technology and extend the example to a theorem.

5.1 Example

Let F,G be the uniform distribution over the unit interval. Also, let c(x) = e−γx. We

are interested in the effect of increasing γ (i.e. improving the matching technology) on the

equilibrium level of wage. In Figure 5(a), we plot equilibrium level of wage while varying

m and γ. The shaded area in this figure is where the derivative of equilibrium wage with

respect to γ is positive. Observe that for any fixed γ, there exists a threshold m̂γ such that the

equilibrium wage increases with γ iff m < m̂γ (i.e., matching technology complements labor

when the market is not sufficiently thick). An interesting observation is that the threshold

m̂γ decreases in γ. A simple explanation is given by interpreting improving technology

as another way of “thickening the market”: as the market becomes “thicker”, improving

technology becomes less favorable to workers.

Before extending the above example to more general cost functions and distributions,

we discuss the intuition. To this end, consider the following thought experiment: Fix a

monopoly equilibrium, and let p∗, w∗, k∗, i∗ denote the equilibrium parameters, defined as
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(a) Equilibrium wage. (b) Wage increases with γ in the
shaded area.

Figure 5

usual. Hold price and wage fixed, and then update the matching technology: this would

correspond to changing the cost function c to a new cost function d such that d(i) < c(i)

holds for all positive i. Under the new matching technology, the number of customers who

join the firm and the number of idle workers would change. Let ĩ and k̃ respectively denote

the new parameters. The core of this thought experiment is based on the following fact:

under the new matching technology, the equilibrium wage increases iff c′(i∗) > d′(̃i). In

words, the equilibrium wage increases iff adding one more idle worker decreases the waiting

time more under the new technology than under the old technology. To understand whether

this would hold, we should look at the two effects involved: improving technology pressures

the equilibrium wage in two ways, discussed below.

First, when technology is improved, service quality goes up, and therefore, the customers’

demand for rides goes up. This also implies that the number of idle workers goes down, i.e.

ĩ < i∗. This creates a force that pushes down the firm’s marginal expenditure to improve

service quality (because, all else being equal, improving service quality is cheaper when the

number of idle workers is smaller), which works in favor of increasing the equilibrium wage.

Second, at some levels of idle workers, namely i, an additional idle worker may decrease

the waiting cost less under the new matching technology than under the old matching tech-

nology, i.e. c′(i) < d′(i) may hold for some i. Note that both c′(i), d′(i) are negative numbers,

each saying how much waiting cost would go down for an additional idle worker. Although

the function d lies below c, its derivative may be larger than the derivative of c at some i.

When this inequality holds, it creates a force that pushes up the firm’s marginal expenditure

to improve service quality under the new technology, which works in favor of decreasing the
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equilibrium wage.

5.2 The welfare effects of improved matching technology

We set up a general model of matching technology by allowing the cost function to depend

on the level of technology, which we denote by γ ∈ (0,∞). A higher value of γ corresponds

to a “better” matching technology, as we will formalize soon. To this end, let the function

c : R2
+ → R+ denote the cost function, with c(γ, i) being the customer’s waiting cost when

there are i idle workers available at level γ of technology.

We make the following assumptions on c: (i) c is smooth: c is continuous and its partials

with respect to its arguments exist and are continuous. (ii) for any γ, the function c(γ, ·) is

a standard cost function, and (iii) cost goes down with technology: for any γ1 < γ2 and any

positive i, c(γ1, i) > c(γ2, i).

We need some notation to present the theorem. Let the variables p(m, γ), w(m, γ), k(m, γ)

denote the equilibrium values of these parameters as functions of m, γ. Also, define e(m, γ) ≡
k(m,γ)
λ(m,γ)

. For a function x(m, γ), we use the notation xi(m, γ) to denote the partial of x(m, γ)

with respect to its i-th argument, for i ∈ {1, 2}.
The following theorem shows that workers’ average welfare, their wage, and their average

employment time increase with technology when the market is not too thick.

Theorem 5.1. For any γ > 0, there exists mγ such that a monopoly equilibrium exists iff

m > mγ, and there exists m̂γ > mγ such that for all m ∈ (mγ, m̂γ), w2(m, γ), e2(m, γ), and

(uW )2(m, γ) are positive.

6 The effect of competition

We study the effect of competition by comparing monopoly and duopoly equilibria. We

start by setting up the duopoly model in Subsection 6.1, and then we present the results

in Subsection 6.2. We find that workers’ wage and average welfare are always higher in

the duopoly equilibrium. However, the effect of competition on customers depends on the

thickness: when the market is sufficiently thick, the price is lower and the customers’ average

welfare is higher in the duopoly equilibrium; but when the market is less thick, the price is

higher and the customers’ average welfare is lower.

There is a simple explanation. There are two main forces affecting the duopoly price.

Competition over customers pushes the customer price down, while competition over workers
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raises the firms’ costs, pushing the customer price up. The net effect of competition on price

depends on the strength of these forces. When the market is thin, competition over workers

dominates competition over customers, and the price is higher and the customers’ average

welfare is lower in the duopoly equilibrium than in the monopoly equilibrium.

6.1 Setup

The setup is similar to the monopoly setup, but with two firms. F = {1, 2} is the set of

firms. When a firm f is clearly known from the context, we sometimes use the notation −f
to refer to the other firm.

The high-level description of the game is as follows. Each firm chooses price and wage.

The payment profile of firm f is the tuple Pf = (pf , wf ). The payment profile P is defined

by the tuple (P1,P2). The profit of each firm would then be determined by a subgame, in

which agents (workers and customers) observe the payment profile and the decisions of the

other agents and make (optimal) decisions based on that information.10 In a steady-state

subgame equilibrium under payment profile P, no agent benefits from changing her decision,

taking the decisions of other agents as given. We will see that any payment profile P induces

an essentially unique steady-state subgame equilibrium. Then, a duopoly equilibrium will

be defined as the equilibrium of a game played between the two firms whose actions are

choosing price and wage.

The first step to formalize these definitions is defining the actions available to each agent.

Agents

Workers A worker can choose a subset of the firms to accept offers (ride requests) from.

This gives her 2 × 2 = 4 possible actions, one of which she chooses. We say a worker takes

action S if she chooses to accept offers from the subset S ⊆ F of the firms. In this case, we

say the worker is of type S. We say a worker has joined firm f if she is of type S and f ∈ S.

Customers The model is similar to the monopoly model, with one main difference: cus-

tomers’ valuations are now modeled by a joint distribution over the two firms. We thereby

suppose that a customer’s valuations are represented by (v1, v2) ∼ G, where vf is the cus-

tomer’s valuation for firm f and G : [0, 1]2 → [0, 1] denotes the CDF of the joint distribution.

10The decisions of all agents do not need to be common knowledge, so long as the values of some equilibrium
parameters (such as size of the pool and the rate of customers who join) are.
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Immediately upon her arrival, each customer takes one of the following actions: requesting

service from firm 1 (i.e. joining firm 1), joining firm 2, or joining no firm. If the customer

joins a firm, she will be served for a unit of time, after which she departs the market. If the

customer decides to join no firm, she immediately departs the market.

Compositions

Worker composition A worker composition is a tuple (I, B) with

I = {i(S) : ∀S ⊆ F},

B = {b(S, f) : ∀f ∈ F , S ⊆ F such that f ∈ S},

where i(S) ∈ R+ denotes the mass of idle workers of type S and b(S, f) ∈ R+ denotes the

mass of workers of type S busy at firm f . (It will become clear that these parameters have

a steady-state interpretation.) We use b(f) to denote the mass of all workers busy at firm f ,

i.e.
∑

S3f b(S, f). We use i(f) to denote the mass of all idle workers who accept offers from

firm f , i.e.
∑

S3f i(S).

Customer composition A customer composition is a tuple k = (k1, k2) where kf denotes

the (steady-state) rate of customers who join firm f .

Composition A composition A is a tuple (k, (I, B)) where k is a customer composition

and (I, B) is a worker composition.

Arrangement An arrangement is a tuple Σ = (P,A) where P is a payment profile and

A is a composition.

Payoffs

Customer’s payoff Under the arrangement (P,A), payoff of a customer from joining firm

f is vf − pf − c(i(f)), where vf is the valuation of the customer for firm f .

Worker’s payoff Similar to the monopoly model, each worker has an outside option r,

which is distributed from a distribution with CDF F . Given an arrangement (P,A), for

any firm f , define γf =
kf
i(f)

. The interpretation for γf is that it is the steady-state rate by

which an idle worker who accepts offers from firm f receives offers from f . For any action
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S, define γ(S) =
∑

f∈S γf . The interpretation for γ(S) is that it is the steady-state rate by

which a worker of type S receives offers. The payoff of a worker with outside option r who

takes action S under arrangement (P,A) is

r ·
(

1

1 + γ(S)

)
+
∑
f∈A

wf ·
γf

1 + γ(S)
.

The interpretation of the above expression is that this is the steady-state earnings of a worker

of type S per unit of time from wage and outside option. This expression is derived from a

straight-forward exercise that computes the average time that a worker of type S remains

idle or works at each of the firms (Lemma E.7).11

(Steady-state) subgame equilibrium

An arrangement Σ = (P,A) is said to be a subgame equilibrium,when the following conditions

hold:

(i) Customers optimize. Each customer chooses the action that maximizes her payoff.

In case the maximum payoff is attained by multiple actions, the customer chooses one

of those actions uniformly at random.

(ii) Workers optimize. Each worker chooses the action that maximizes her payoff. In

case the maximum payoff is attained by multiple actions, the worker chooses the action

with the smallest size, i.e. if actions S, T both provide the maximum level of steady-

state earnings, the worker prefers S to T if |S| < |T |.12 If |S| = |T | and S, T are the

only actions that maximize the worker’s steady-state earnings, then the worker chooses

one arbitrarily.13

(iii) Balance equations. Actions taken by customers and workers induce A in the steady-

state. Briefly, this means that the balance equations hold for all the parameters that

define the composition A. More precisely, assuming that the composition of workers

and customers are determined by A at a given time, then (i) for any S ∈ F , the in-flow

11 When the workers of type S have a positive mass, i.e. when b(S) + i(S) > 0, the payoff of a worker of
type S with outside option r could be written in a more intuitive form: (1 −

∑
f∈S tf ) · r +

∑
f∈S tf · wf ,

where tf is the steady-state fraction of time that the worker is employed at firm f .
12It is possible to consider other rules, e.g. breaking the ties in favor of the action with the largest size; as

we will discuss later, this will not change our results.
13By Fact E.8 in the appendix, this rule is never used, as its condition is never satisfied.

20



of idle workers of type S is equal to their out-flow, (ii) for any S ∈ F and f ∈ F ,

the in-flow of workers of type S busy at firm f is equal to their out-flow, and (iii) the

in-flow of customers at each firm is equal to their out-flow from that firm.

When Σ = (P,A) is a subgame equilibrium, we sometimes say that Σ is a subgame

equilibrium under P, or a subgame equilibrium induced by P.

Definition 6.1. A non-trivial subgame equilibrium is a subgame equilibrium in which both

firms serve a positive rate of customers. A subgame equilibrium that is not non-trivial is

called trivial.

Our main focus is on the non-trivial equilibria, which, when exist, are uniquely determined

by the payment profile.

Proposition 6.2. Any payment profile P induces at most one non-trivial subgame equilib-

rium.

Any payment profile P induces at least one trivial subgame equilibrium: the subgame

equilibrium in which no firm serves any customers. We call this the ∅ subgame equilibrium.

There are at most two other trivial subgame equilibria: for each firm, there is at most one

subgame equilibrium at which only that firms serves a positive rate of customers. (Propo-

sition E.9). As we will see soon, we focus on the non-trivial subgame equilibria for defining

the notion of (global) duopoly equilibrium.

Definition 6.3. The steady-state profit of a firm f in a subgame equilibrium Σ is

Πf (Σ) ≡ kf · (pf − wf ),

where kf , pf , wf respectively denote the steady-state rate of customers who join f , and the

price and wage at firm f in Σ.

We are almost ready to define the duopoly equilibrium, that is, the equilibrium of the

game played between the two firms. This will be our main equilibrium notion. In simple

words, a duopoly equilibrium is a payment profile P = (P1,P2) such that no firm f can

increase its profit by deviating from Pf to another payment profile Pf . There is, however,

one subtlety. Firm f may choose Pf so that the payment profile P = (Pf ,P−f ) induces

no non-trivial equilibrium. In that case, which of the trivial equilibria induced by P should

be selected? There are several ways to address the multiplicity of trivial equilibria: (i) one
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can define a selection rule that selects one of the trivial equilibria in such cases, (ii) we can

slightly modify the workers’ tie-breaking rule (the rule that breaks the ties between their

possibly multiple optimal actions) such that any payment profile would induce a unique

subgame equilibrium,14 and (iii) one can change the game that firms play by defining the

firms’ actions as quantity choices, rather than payment profiles (a well-known approach in

the two-sided markets literature). All the above approaches lead to the same main insight,

the adverse effect of competition in thin markets. (See the appendix, Subsection E.4.) To

keep the main analysis simple, we take the first approach in here: defining a selection rule.

The selection rule

Given a payment profile P, the selection rule selects a unique subgame equilibrium Σ[P]

that is induced by P. We define Σ[P] to be the steady-state non-trivial subgame equilibrium

that serves the highest number of customers. We prove that Σ[P] is in fact the (unique)

non-trivial subgame equilibrium under P, if one exists. Otherwise, Σ[P] would be one of the

trivial subgame equilibria under P: the trivial subgame equilibrium under which the highest

number of customers are served.15 (Lemma E.11.)

Remark 6.4. One of the simplest selection rules is the ∅ selection rule: the rule that

selects the ∅ subgame equilibrium when a non-trivial subgame equilibrium does not exist. As

the profits of both firms are 0 at the ∅ subgame equilibrium, this selection rule effectively

eliminates deviations under which no non-trivial subgame equilibrium is induced by P. The

selection rule that we chose does not eliminate such deviations, and therefore it gives a

stronger equilibrium notion.

Duopoly equilibrium

A subgame equilibrium Σ = (P,A) is a duopoly equilibrium if for any firm f and any payment

profile P = (Pf ,P−f ), Rf (Σ[P]) ≥ Rf (Σ[P]).

A duopoly equilibrium Σ = (P,A) is called symmetric iff P1 = P2.

Fact 6.5. Both firms serve the same rate of customers at any symmetric duopoly equilibrium.

14We present the main analysis under the tie-breaking rule that does not eliminate any of the trivial
equilibria, with the intention of revealing their possible multiplicity.

15Notably, this coincides with the subgame equilibrium that maximizes customers’ welfare, where welfare
is defined in the usual way as the integral over customers’ payoffs.
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6.2 The adverse effect of competition

We start with an example. Let c(x) = e−γx with γ > 0 and let F be the uniform distribution

over the unit interval. Also, let G be the joint distribution for a customer’s valuations

over the two firms, i.e. (v1, v2) ∼ G is a customer’s valuation for firms 1, 2. We define G

(implicitly) as follows:

v1 = σx+ (1− σ)y,

v2 = σx+ (1− σ)(1− y),

where x, y are iid uniform random variables with support over the unit interval and σ ∈ (0, 1).

The interpretation is that x is the common value component and y is the idiosyncratic

component. σ determines the correlation over customers’ preferences. The higher σ, the

higher corr(v1, v2) would be.

We compare the price and the customers’ average welfare at the unique symmetric

duopoly equilibrium to the price and the customers’ average welfare at the unique monopoly

equilibrium. (Whenever we refer to a monopoly or duopoly equilibrium in a formal state-

ment, the proof for existence and uniqueness of the equilibrium will be included in the proof

of that statement.) For brevity, we refer to the symmetric duopoly equilibrium as duopoly

equilibrium, from now on.

Let p
duo

(m) and pmon(m) respectively denote the equilibrium price at the duopoly and

monopoly equilibria. Similarly, let uC
duo

(m) and uC
mon

(m) respectively denote the customers’

average welfare at the duopoly and monopoly equilibria. Customers’ average welfare is

defined in the usual way, as the integral of payoffs over the customers who join divided by

the rate of customers who join.16

In this example, there exist m̂1 such that p
duo

(m) > pmon(m) holds iff m < m̂1. Similarly,

there exists m̂2 such that uC
duo

(m) < uC
mon

(m) holds iff m < m̂2. To demonstrate, we have

plotted these quantities in Figure 6.

When the market is not sufficiently thick, the price is higher in the duopoly equilibrium

and the customers’ average welfare is lower. We call this the adverse effect of competition.

Before generalizing the observation in this example, we explain the intuition. The same

intuition holds in our more general statement. (Theorem 6.6)

The rough intuition is that there are two forces affecting the price. There is a downward

16In defining uC
duo

(m), one may consider customers who join either of the firms, or only customers who join
a fixed firm. The two definitions are identical, by symmetry of the duopoly equilibrium.
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(a) p
duo

(m) and pmon(m) (b) uC
duo

(m) and uC
mon

(m)

Figure 6: Price and customers’ average welfare for σ = 3/4 and γ = 1.

force that pushes the price down, and is derived by competition over customers. There is also

an upward force that pushes up the wage, and thereby price. The upward force is derived

by competition over workers. The duopoly price is greater than the monopoly price when

the upward force is stronger than the downward force, i.e. when competition over workers

dominates competition over customers. This happens when the mass of potential workers,

m, is not sufficiently large.

We will also provide a technical intuition by discussing the effects of competition over

workers and customers on the firm’s first-order condition. This will also explain what the

term “dominates” precisely means. First, we extend the above observation to more general

cost functions. We will let σ to be any constant greater than 1/2, which ensures that the

weight of the common value component is larger than the idiosyncratic component.

Theorem 6.6. Let σ > 1/2. Then, there exists m such that monopoly and duopoly equilibria

do not exist when m ≤ m. Moreover, there exists m̂ > m such that for all m ∈ (m, m̂),

unique monopoly and duopoly equilibria exist and p
duo

(m) > pmon(m) and uC
duo

(m) < uC
mon

(m).

Theorem 6.7. Let σ > 1/2. Then, w
duo

(m) > wmon(m) and uW
duo

(m) > uW
mon

(m) hold at all m

where monopoly and duopoly equilibria exist.

In what follows, we provide a technical discussion on how the strength of competition

over customers and workers is captured by a semi-elasticity term and a commission fee term

that appear in the firm’s first-order condition (FOC) for price.

We start by writing the firm’s FOC in a familiar form. In the rest of the argument, we

fix the price and wage offered by firm 2, and suppose that the function D : [0, 1]2 → [0, 1]

represents customers’ demand for firm 1, i.e. D(p, w) denotes the rate of customers who join
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the firm at price p and wage w. The firm’s FOC for price could then be written as follows:(
−D1(p, w)

D(p, w)

)
· (p− w) = 1. (6.1)

Writing the firm’s FOC as (6.1) has a certain appeal for our purpose. Note that the LHS

is just the product of minus semi-elasticity of demand and the commission fee. The first

factor reflects the strength of competition over customers and the second factor reflects the

strength of competition over workers, as we will explain.

Let p(k) and w(k) denote the profit-maximizing price and wage for firm 1 conditioned on

it serving a rate k of customers. We rewrite the LHS of (6.1) as a function of k, as follows.

Define

A(k) ≡
(
−D1(p(k), w(k))

k

)
· (p(k)− w(k)). (6.2)

We would name A(k) the adjusted price elasticity of demand, for reasons that are discussed

next.

Let k∗ denote the rate of customers that firm 1 serves in its profit-maximizing solution.

We state two key facts without stating their proofs: (i) the condition A(k∗) = 1 must hold,

and (ii) A(k) > 1 iff k < k∗. To understand these conditions better, note their similarity

to the FOC of a hypothetical monopolist who produces a good with cost 0: it is well-

known that the price elasticity of demand is −1 at the monopolist’s optimal solution, which

resembles (i) in our problem. Furthermore, under reasonable assumptions on the demand

distribution, if the hypothetical monopolist sells to fewer customers (by posting a higher

price), the elasticity would be smaller than −1. This resembles (ii) in our problem. Finally,

observe that the RHS of (6.2) is similar to the expression for price elasticity of demand in

the hypothetical monopolist’s problem. The main difference is that second multiplicand in

the definition of A(k) is p−w (rather than p), because in our problem there is a cost w per

ride.

We are now ready to elaborate on the upward and downward forces that were discussed

previously and precisely define what the term dominates means when we say the duopoly

price is higher than the monopoly price when competition over workers dominates competi-

tion over customers. To this end, fix m, and consider a duopoly equilibrium in this market,

which we call instance II. Construct instance I from instance II by removing firm 2 from the

market and enforcing firm 1 to serve the same level of customers as in instance II. We are
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interested in understanding how adjusted price elasticity for firm 1 changes when we move

from instance II to instance I. Let AII and AI respectively denote adjusted price elasticities

in instances II and I, respectively. (Note that the expressions for AII ,AI involve different

demand functions)

The commission fee term in AI is always larger than the commission fee term in AII . We

simply say that the commission fee goes up when firm 2 is removed. This is quite intuitive:

the commission fee goes up when the competitor leaves. This is in fact the upward force

that we discussed earlier. The commission fee goes up more when m is smaller, and so the

upward force is stronger when m is smaller.

On the other hand, the semi-elasticity term in AI is smaller than the semi-elasticity term

in AII . We simply say that the semi-elasticity term goes down when firm 2 is removed.

This is just the downward force that we discussed earlier. The semi-elasticity term goes

down more when m is larger. The intuition is that at larger m, more customers with similar

valuations for the two firms are served, and therefore, it becomes easier for a firm to attract

customers (from the other firm) by lowering the price.17 This creates a larger gap between

the semi-elasticity terms when m is larger.

To sum up the intuition, observe that AII = 1 always holds, as instance II is a duopoly

equilibrium. When m is small, the upward force is strong and the downward force is weak,

and thereby AI > AII = 1. Consequently, in instance I, firm 1 could increase profit by

decreasing price and serving a larger rate of customers; this could result in firm 1 serving

more customers in the monopoly equilibrium than in the duopoly equilibrium, and at a lower

price.

6.3 Examples: correlation and matching technology

In Figure 7(a), we plot the monopoly and duopoly equilibrium prices while varying m and

σ. (Recall that σ determines the correlation between a customer’s preferences. The higher

the σ, the higher the correlation.) For any fixed σ, we can observe the value of m at which

the duopoly price is equal to the monopoly price. Denote this value by m(σ), defining it is a

function of σ. Therefore, for a fixed σ, the duopoly price is higher than the monopoly price

iff m < m(σ). The noteworthy point is that m(σ) is decreasing in σ. This is observable

in Figure 7(a), as m(σ) is determined by the intersection of the two planes plotted in the

figure. There is a simple interpretation: as σ goes up, competition over customers becomes

stronger, and dominates the competition over workers at a lower value of m.

17Roughly speaking, a customer with valuation (v1, v2) values the two firms similarly if v1, v2 are “close”.
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(a) m ∈ [3, 4] and σ ∈ [0.7, 0.8] (b) m ∈ [3, 4] and γ ∈ [1, 2]

Figure 7: The orange surface (lighter color) and blue surface (darker color) respectively give
the monopoly and duopoly prices.

In Figure 7(b), the same exercise is done by replacing σ with γ. Similarly, for any fixed

γ, let m(γ) denote the value of m at which the duopoly price is equal to the monopoly

price. Observe that that m(γ) is decreasing in σ. The interpretation is that as γ goes

up, competition over workers becomes weaker (because the matching technology of firms

becomes stronger). Consequently, competition over customers dominates competition over

workers sooner, i.e., at a lower value of m.

7 Discussion

In this section we discuss some of the assumptions that we make in our model, their role in

the analysis, and also some the alternative modeling choices.

Alternative assumption: workers lose their outside option if they join the firm

In our main model a worker earns her outside option r whenever she is not busy serving a

customer. An alternative assumption is that workers who join the firm (i.e. decide to accept

ride requests from the firm) completely lose their outside option. Under this alternative

assumption, a worker would join the firm iff her outside option is smaller than her steady-

state income (from wage) per unit of time if she joins the firm.

The model under this alternative assumption is far less tractable. We qualitatively

demonstrate that the same thin-market effects are still in play, and in fact, we observe

that they are amplified. Figure 10 plots the equilibrium wage as a function of m under
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both assumptions. The left plot corresponds to the alliterative assumption (under which

workers lose their outside option after joining) and the right plot corresponds to our original

assumption. The non-monotonicity in wage is observed under both assumptions. Note that

the scale of the horizontal axis in the left graph is almost twice its scale in the right, which

suggests that the thin market complementarity effects persists more under the alternative

assumption. The intuition is simple: under the alternative assumption, fewer workers join

the firm at any fixed level of wage (because workers lose their outside option if they join);

roughly speaking, this assumption makes the market effectively “thinner” and amplifies the

thin-market effects.

Figure 8: Equilibrium wages as functions of m for when F,G are the uniform distribution
over [0, 1] and c(i) = e−i. The left and right plots respectively correspond to the alternative
and original assumptions.

Convexity of the cost function c

Convexity of the cost function is a main derivative of the thin-market complementarity

effects. To clarify, we start with a monopoly example. Suppose that the cost function c

belongs to the family

C = {cγ : γ > 0} ,

with cγ(i) ≡ (max {0, 1− i})γ. Such functions are concave for γ < 1, affine for γ = 1, and

convex for γ > 1. The main goal in this example is demonstrating the role of convexity of

the cost function by letting γ vary from below 1 to above 1.

In Figure 9, we compare the the equilibrium wages as a function of m for when c is

concave and convex. For γ < 1, the prediction by the law of demand holds: equilibrium

wage decreases with the size of labor pool, m. For γ > 1, the equilibrium wage increases

with m when m is below a certain threshold.
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For the case of convex cost functions, we provided the intuition for non-monotonicity

in the equilibrium wage in Section 4; recall that the intuition is based on the marginal

revenue and marginal cost (per ride) of an increase in wage and the equality MR = MC

which always holds at the monopoly equilibrium. This equality does not hold for concave

cost functions because the monopoly solution would not be an interior solution of the firm’s

profit maximization problem, as demonstrated in A: for the case of uniform distributions

F,G and concave cost functions c, the monopolist employs just enough workers to provide

the lowest possible waiting time for customers, which would imply that the equilibrium wage

decreases with the labor pool.

(a) Concave or affine c: any γ ≤ 1. (b) Convex c: γ > 1

Figure 9

Next, we discuss that convexity of waiting times is a natural assumption in ride-sharing

markets. Consider the following thought experiment: place i points in the unit circle inde-

pendently uniformly at random. In this thought experiment, these points correspond to i

idle workers available to serve a customer who is located on the center of the circle. The

expected distance of the closest worker to the center of the circle is a convex, decreasing

function of i. Similar measures have been defined and estimated empirically: the Expected

Time of Arrival (ETA) of a driver as a function of the number of idle workers “around”

a customer is estimated by ride-sharing platforms, such as Uber (e.g., see [Phillips 2017]).

Although these estimates could vary across cities, convexity in the number of idle workers is

their common feature.

The distribution of workers’ outside options (F ) has a decreasing PDF

Before discussing the role of this assumption, we remark that it is not a necessary assump-

tion. Figure 10 demonstrates the non-monotonicity of wage in labor pool for when this

assumption does not hold. To explain the role of this assumption, we first note that workers’
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average welfare may decrease when equilibrium wage increases; this could happen if, after an

increase in wage, a “large” number additional workers join the firm, decreasing the average

employment time and the average welfare of workers who work for the firm. The condition

that F has a decreasing PDF essentially controls the number of additional workers who join

the firm as the equilibrium wage goes up with the labor pool, and is sufficient for all of the

theorems to hold.

Figure 10: Equilibrium wage as a function of m for when the CDF of F is f(x) = x3/2 for
x ∈ [0, 1], G is the uniform distribution over [0, 1], and c(i) = e−i.
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Appendices

A The role of convexity

In this section, we first focus on a stylized family of cost functions, parameterized by γ, and

defined by c(i) = (max {0, 1− i})γ. We also assume that F,G are the uniform distribution.

The goal is highlighting the role of the convexity of the cost function in non-monotonicity of

the equilibrium wage. Then, in Subsection A.1 we show that similar insights hold for general

cost functions.

Affine cost function. Suppose γ = 1. First, see that m0 = 1, because p + c(mp) < 1

implies m > 1. Fix some m > m0. We investigate whether there exists a beneficial deviation

p′ = p(m) + εp and w = w(m) + εw which results in the same level of customers (but

increases profit). Suppose we increase wage by εw; this results in a decrease in waiting

cost with magnitude mεw. Therefore, we can set εp = mεw. This results in the same level

of customers, and increases profit per service. So, at the monopoly equilibrium, such a

deviation should not be possible. That is, we must have i(m) = 1. In other words, when

γ = 1, the monopolist always maintains the same level of idle workers, i = 1. The monopoly

equilibrium then must be the solution to

max
p,w≥0

Π(p, w)

s.t. k∗ = 1− p∗,

mw∗ − k∗ = 1.

Solving by setting FOC to 0 implies that w(m) = 1+3m
2m+2m2 , which is decreasing in m. The

interpretation is simple: Let m marginally increase and ignore the changes in k(m). If the

level of wage stays the same, the number of idle workers will be larger than 1. The monopolist

therefore takes wage down as m goes up.

Concave cost function. Suppose γ < 1. By the equation c′(i(m)) = −1/m, i(m) must be

decreasing in m. This means the force that pushes wage down as m goes up is even stronger

than the linear case, which maintained the same level of idle workers. So, the equilibrium

wage is decreasing in m in this case as well.
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A.1 More general cost functions

We repeat the above exercise for more general cost functions and show that when c is concave

or affine, equilibrium wage decreases with m. This is done by showing that in such cases,

c(i∗) = 0 holds at any monopoly equilibrium. Given this fact, we can repeat the above

exercise identically, which would imply that wage decreases with m.

Lemma A.1. There is at most one monopoly equilibrium (p∗, w∗, k∗) that satisfies c(i∗) = 0.

Proof. At a monopoly equilibrium, c(i∗) = 0 implies that i∗ = 1. Therefore, i∗ = mw∗ − k∗

implies that w∗ = 1+k∗

m
. This equation, together with the equation k∗ = 1 − p∗ − c(i∗) and

the FOC form a system of equations that characterize the equilibrium. This system has a

unique solution, as shown in file “c0-eqm”.

Concave c. Suppose that c is strictly concave.

Lemma A.2. The (unique) monopoly equilibrium (p∗, w∗, k∗) satisfies c(i∗) = 0.

Proof. We prove that c(i∗) = 0 must be satisfied at any equilibrium. The proof of uniqueness

then follows from (A.1). Proof by contradiction. We consider the deviation that increases

both price and wage by ε > 0, i.e. p# = p∗+ε and w# = w∗+ε, and prove profit is decreasing

along this direction. Define the function

Πε(p, w) ≡ k(p+ ε, w + ε) · (p− w).

Observe that

d Πε(p
∗, w∗)

d ε
=

d k(p+ ε, w + ε)

d ε
· (p− w), (A.1)

d2 Πε(p
∗, w∗)

d ε2
=

d2 k(p+ ε, w + ε)

d ε2
· (p− w). (A.2)

Next, in file “concave-c” we compute

d k(p∗ + ε, w∗ + ε)

d ε
= 0

d2 k(p∗ + ε, w∗ + ε)

d ε2
= −(m+ 1)c′′(mw∗ − k)

(c′(mw∗ − k)− 1)2 > 0, (A.3)

where the first inequality holds because the mass of customers who join, k, must not increase

by deviation (ε, ε) and the second inequality holds because c′′(i) < 0 for all i > 0. Now,
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(A.2) and (A.3) together imply that the deviation (ε, ε) increases the profit, which is a

contradiction.

Affine c. Suppose c is affine.

Lemma A.3. The (unique) monopoly equilibrium (p∗, w∗, k∗) satisfies c(i∗) = 0.

Proof. We prove that c(i∗) = 0 must be satisfied at any equilibrium. The proof of uniqueness

then follows from (A.1). Consider an arbitrary monopoly equilibrium, namely (p, w, k) such

that mw−k > 0. Also, consider an ε > 0 sufficiently small. We show that the deviation that

increases both price and wage by ε > 0, i.e. p# = p∗+ε and w# = w∗+ε does not change the

profit. The proof is by contradiction. Suppose it does. If the deviation increases the profit,

then we reach a contradiction because we supposed (p, w, k) is a monopoly equilibrium. If

the deviation (+ε,+ε) decreases the profit, then the deviation (−ε,−ε) must increase the

profit. (This is a straight-forward consequence of affinity of c.) Therefore, the deviation (ε, ε)

must not change the profit. This implies that, without changing the profit, we can change

p∗, w∗ by moving along the direction (−ε, ε) until the number of idle workers is equal to 0.

But at this point, the mass of customers who join, and thereby the profit, should be qual to

0. Contradiction.

B Proofs from Subsection 4.2

First, we define some notation and go over some of the basic properties. These will be used

in the proofs for Proposition 4.1 and Proposition 4.2.

B.1 Basic properties of the monopoly equilibrium

Lemma B.1. The profit function Π(p, w) ≡ (p− w) · k(p, w) is bounded and continuous in

(p, w).

Proof. The proof follows from the market-clearing condition.

Lemma B.2. The partials Πp(p, w) and Πw(p, w) exist when k(p, w) > 0.

Proof. See file “partials-uniformFG”.
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The market equilibrium under one profit maximizing firm is called a monopoly equilib-

rium. Any non-binding monopoly equilibrium must satisfy the following conditions:

k = 1− p− c(i), (B.1)

k = −kp(p, w) · (p− w) (B.2)

k = kw(p, w) · (p− w). (B.3)

Recall that i denotes the number of idle workers, i.e. i = mw − k. (B.1) is just the

market clearing condition. (B.2) and (B.3) are just the FOCs for price and wage, where

kp, kw denote the partial derivatives of k(p, w) with respect to p, w, respectively. In other

words, (B.2) and (B.3), are just equations Πp(p, w) = 0 and Πw(p, w) = 0, rearranged.

Implicit differentiation from (B.1) implies

kp(p, w) =
1

c′(mw − k)− 1
, (B.4)

kw(p, w) =
mc′(mw − k)

c′(mw − k)− 1
. (B.5)

(B.2) and (B.3) imply that kp = −kw, which together with the above two equations implies

c′(mw − k) =
−1

m
. (B.6)

(B.6) is an important condition. Intuitively, it is saying that for a marginal increase in

wage, the monopolist can increase price by the same amount without changing the rate of

customers who join.18 Another way of writing (B.6) is −cw(m,w, k) = 1, which could be

interpreted as the equation MR = MC, i.e. the marginal revenue per ride for an increase in

wage is equal to its marginal cost. The intuition that we provide in Subsection 4.2 is based

on this interpretation. Next, we use (B.6) to simplify the equilibrium conditions.

By (B.6), (B.4) and (B.6), we can write

−kp(p, w) = kw(p, w) =
m

m+ 1
.

This allows us to rewrite the system of equations given by (B.1), (B.2), (B.3) as

18In other words, the marginal rate of substitution between price and minus wage is equal to 1 on any
iso-quant of the customer’s payoff function, which is defined as u(v) = v − p − c(i), for a customer with
valuation v.
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k = 1− p+ c(i), (B.7)

k =
m

m+ 1
· (p− w), (B.8)

c′(i) =
−1

m
. (B.9)

Proposition B.3. Any non-binding solution must satisfy
k = 1− p+ c(i),

k = m
m+1
· (p− w),

c′(i) = −1
m
.

(B.10)

.

Proposition B.4. Let m0 = −1
c′(0)

. There exists a solution (p, w, k) to (B.10) with k ≥ 0

iff m ≥ m0. Furthermore, the solution is unique. Let (p(m), w(m), k(m)) denote the unique

solution as a function of m. The functions p(m), w(m), k(m) : R+ → R+ are continuous and

differentiable at all m > m0.

Proof. Because c is convex, its derivative is increasing. Therefore, c′(i) ≥ c′(0) must always

hold, which implies that −1
m
≥ c′(0) should hold if (B.10) has a solution. That is, m ≥

− 1
c′(0)

should hold. For the rest of the proof, see file “exists-uniformFG”, where we find

a closed-form solution for (B.10) when m ≥ − 1
c′(0)

and observe its differentiability when

m > − 1
c′(0)

.

We use a similar notation to denote the equilibrium values of other parameters, e.g.

λ(m) would denote the equilibrium value of λ as a function of m. By the usual convention,

p′(m), w′(m), k′(m) denote the derivatives of the equilibrium values with respect to m. When

the argument m is clearly known from the context, we sometimes denote the equilibrium

values by an asterisk, e.g. w(m) would be denoted by w∗.

B.2 Proofs from Subsection 4.2

Proof of Proposition 4.1. The claims about uniqueness and existence are proved in Proposi-

tion B.4. The equation c′(i∗) = −1/m readily implies

w∗ =
k∗ + c′−1(−1

m
)

m
.
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We will take the derivative with respect to m from both sides of this equality. First observe

that

d c′−1(−1
m

)

dm
=

1

c′′(w∗m− k∗)
· 1

m2
, (B.11)

k′(m) =
p∗ + w∗m

2(1 +m)2
, (B.12)

where (B.12) is proved in file “proof-1.m”. Using the above equations, we can then write

w′(m) =
m ·
(

1
c′′(w∗m−k∗) ·

1
m2 + k′(m)

)
− w∗m

m2
⇒

w′(m) > 0⇔ 1

m2c′′(w∗m− k∗)
+ k′(m) > w∗, (B.13)

and therefore,

w′(m) > 0⇐ 1

m2c′′(w∗m− k∗)
> w∗. (B.14)

which holds because (B.12) implies that k′(m) > 0. Finally, observe that

cm,w(m,w∗, k∗) = c′(w∗m− k∗) +mw∗c′′(w∗m− k∗)

=
−1

m
+mw∗c′′(w∗m− k∗)⇒ (B.15)

cm,w(m,w∗, k∗) < 0⇒ w∗ <
1

m2c′′(w∗m− k∗)
. (B.16)

(B.16) Together with (B.14) prove the claim.

Proof of Proposition 4.2. The proof directly follows from (B.13). Multiplying both sides by
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m
w∗

and rearranging the terms, we can rewrite the right-hand side of (B.13) as follows:

1

m2c′′(w∗m− k∗)
+ k′(m) > w∗

⇔ 1

mw∗c′′(w∗m− k∗)
>

(w∗ − k′(m)) ·m
w∗

⇔ mw∗c′′(w∗m− k∗) < w∗

(w∗ − k′(m)) ·m

⇔ mw∗c′′(w∗m− k∗)− 1

m
<

w∗

(w∗ − k′(m)) ·m
− 1

m

⇔ cm,w(m,w∗, k∗) <
w∗

(w∗ − k′(m)) ·m
− 1

m
(B.17)

⇔ cm,w(m,w∗, k∗) < (w∗ − k′(m)) · m
w∗
− 1

m
=

k′(m)

m · (w∗ − k′(m))

where (B.17) follows from (B.15).

As we saw earlier, the condition cm,w(m,w, k) < 0 is equivalent to λc′′(i) + c′(i) < 0,

which could be written as c′′(i)
−c′(i) · λ > 1. This could be interpreted as an elasticity condition:

this is the partial elasticity of the marginal revenue per ride with respect to the mass of viable

workers, λ. To see this more clearly, observe that −c′(i) is the marginal amount by which

the monopolist could raise the price without gaining or losing any customers for a marginal

increase in λ, and that c′′(i) is just equal to the partial ∂c′(λ−k)
∂λ

, which is with respect to λ

and holds k constant. This argument is formalized below.

Corollary B.5 (of Proposition 4.1). w′(m) > 0 holds if the partial elasticity of c′(i) with

respect to the mass of viable workers evaluated at the monopoly equilibrium is greater than

−1, i.e.

∂c′(λ− k)

∂λ

∣∣∣
(λ∗,k∗)

> −1.

Furthermore, the above condition is equivalent to cm,w(m,w∗, k∗) < 0.
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Proof.

cm,w(m,w∗, k∗) = c′(w∗m− k∗) +mw∗c′′(w∗m− k∗) =
−1

m
+mw∗c′′(w∗m− k∗)

⇒
(
cm,w(m,w∗, k∗) < 0⇔ w∗ <

1

m2c′′(w∗m− k∗)

)
⇒
(
cm,w(m,w∗, k∗) < 0⇔ 1 <

1

w∗m2c′′(w∗m− k∗)

)
⇒
(
cm,w(m,w∗, k∗) < 0⇔ 1 <

−c′(w∗m− k∗)
w∗mc′′(w∗m− k∗)

)
⇒
(
cm,w(m,w∗, k∗) < 0⇔ −1 <

∂c′(λ− k)

∂λ

∣∣∣
(λ∗,k∗)

.

)
Applying Proposition 4.1 completes the proof.

B.3 Relaxing the distributional assumptions for the sufficient con-

dition

In here, we dismiss the uniformity assumption and show that Proposition 4.1 would still hold

for a broad class of distributions F,G. Let v∗ denote the valuation of the customer who is

indifferent between joining and not joining the firm, i.e. v∗ = p∗ + c(i∗).

Proposition B.6. Suppose that a monopoly equilibrium exists at m. If

cmw(m,w∗, k∗) < 0,

F ′′(w∗) ≤ 0, (B.18)

G′′(v∗) ≥ 0, (B.19)

then w′(m) exists and w′(m) > 0.

Condition (B.18) just says that the PDF of F should be decreasing at w∗. Both conditions

(B.18) and (B.19) could be replaced with more relaxed conditions that ensure F is not “too

convex” at w∗ and G is not “too concave” at v∗; their current form, however, makes the

proof simpler. In particular, condition (B.19) could be replaced with −G
′′(v∗)

G′(v∗)2
< 2

1−G(v∗)
. (See

Proposition B.12) This condition is satisfied by a wide family of distributions, including

exponential distributions and heavy-tailed distributions with finite mean.19 20

19Heavy-tailed distributions are distributions defined over [1,∞) with CDF F such that F (x) = 1− x−α.
They have a finite mean when α > 1

20Proposition B.6 does not need to bound the supports of F,G. The relaxed condition on G, however, is
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To prove Proposition B.6, we first need a few preliminary results. An argument similar

to Subsection B.1 lets us write the equilibrium characterizing conditions. We start with the

following two lemmas.

Lemma B.7. The profit function Π(p, w) ≡ (p− w) · k(p, w) is continuous and bounded by

1 at any (p, w) where k(p, w) > 0.

Proof. The proof is followed from the market-clearing condition.

Lemma B.8. The partials Πp(p, w) and Πw(p, w) exist when k(p, w) > 0.

Proof. See file “partials-relaxedFG”.

Lemma B.7 and Lemma B.8 allow us to write the equilibrium-characterizing condition as

follows. (The steps are similar to the derivation of the equilibrium characterizing conditions

Equation B.10 in Subsection B.1)

Proposition B.9. Any non-binding solution must satisfy
k = 1−G(p+ c(mF (w)− k)),

k = −kp(p, w) · (p− w),

c′(i) = −1
mF ′(w)

.

(B.20)

.

It is also helpful to write the equilibrium-characterizing equations in a different form: in

terms of allocation quantities rather than prices. To this end, suppose that H ≡ F−1 and

J ≡ G−1. Also, recall that λ = mF (w) denotes the mass of viable workers, and k denotes

the rate of customers who join the firm. The firm’s problem would then be choosing the

quantities λ, k so that its profit is maximized, while the condition k = 1 − G(p + c(λ − k))

is satisfied. Observe that this equation allows us to write p in terms of k, λ as follows:

p = J(1− k)− c(λ− k). Also, observe that w = H( λ
m

).

We therefore can write the firm’s profit function as

Π(λ, k) = k · (J(1− k)− c(λ− k)−H(λ/m)).

This allows us to write the firm’s FOC for the choice of k:

k · (c′(λ− k)− J ′(1− k))− c(λ− k)−H (λ/m) + J(1− k) = 0, (B.21)

also satisfied by, e.g, truncated exponential and truncated heavy tail distributions.
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which is obtained by setting the partial derivative of the profit function with respect to k to

0, i.e. setting Πk(λ, k) = 0.

Furthermore, we can rewrite the equation c′(i) = −1
mF ′(w)

as

c′(λ− k) +
H ′ (λ/m)

m
= 0. (B.22)

We have shown that any monopoly equilibrium must satisfy (B.21) and (B.22).

Lemma B.10. Any monopoly equilibrium satisfies (B.21) and (B.22).

We are now ready to prove Proposition B.6.

Proof of Proposition B.6. First, we prove that the monopoly equilibrium exists in an open

interval around m. The proof uses the Implicit Function Theorem. We use the fact that the

monopoly equilibrium at m satisfies the system of equations given by (B.21) and (B.22), and

then apply the Implicit Function Theorem on this system by considering one independent

variable, m, and two dependent variables, k, λ, whose values depend on m. Applying the

theorem implies the existence of unique functions k : R+ → R+ and λ : R+ → R+ that

determine the equilibrium values of k, λ in an open interval around m. Furthermore, it

implies that the partials of the functions k, λ with respect to the independent variable exist

in the open interval. The proof is in file “existence-Fcav-Gvex”, where we show that the

Implicit Function Theorem applies by showing that the corresponding Jacobian is invertible.

Claim B.11. w′(m) > 0⇔ λ′(m) > F (w∗)

Proof.

λ′(m) = mw′(m)F ′(w∗(m)) + F (w∗(m))) > F (w∗(m))

⇔ mw′(m)F ′(w∗(m)) > 0

⇔ w′(m) > 0.

To prove the main claim, we also we rewrite the “sufficient condition”, i.e. the condition

cmw < 0, as

cm,w(m,w, k) = c′(i) + λc′′(i) < 0, (B.23)
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where λ = mF (w) denotes the number of viable workers.

The rest of the proof is done in file “wage-Fcav-Gvex”. In this file, we compute λ′(m)

by implicit differentiation with respect to m from (B.21) and (B.22). Then, we prove that

when the condition (B.23) and the rest of the given conditions in the statement are satisfied,

λ′(m) > F (w∗) holds, and therefore we have w′(m) > 0 by Claim B.11.

Proposition B.12. Suppose that

cmw(m,w∗, k∗) < 0,

F ′′(w∗) ≤ 0,

−G′′(v∗)
G′(v∗)2

<
2

1−G(v∗)
.

Then, w′(m) > 0

Proof. See the file “wage-Fcav-G”.

Corollary B.13 (of Proposition B.6 and Proposition B.12). Suppose that F ′′(w∗) ≤ 0 and

G has a concave PDF. Then,

cmw(m,w∗, k∗) < 0⇒ w′(m) > 0

Proof. Observe that because of Lemma B.14, Proposition B.12 is applicable if G′′(v∗) < 0.

If G′′(v∗) ≤ 0, then we can apply Proposition B.6.

Lemma B.14. Suppose the CDF G has a concave and decreasing PDF. Then, for any

v ∈ supp(G),
−G′′(v)

G′(v)2
<

2

1−G(v)
.

Proof. Let g denote the PDF of G. Since g is concave and decreasing, the bound

1−G(v) <
1

2
· g(v)

−g′(v)
· g(v)
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always holds. Given this bound, we prove the claim of the lemma:

−G′′(v)

G′(v)2
<

2

1−G(v)
⇐ −G

′′(v)

G′(v)2
· (1−G(v)) < 2

⇐ −g
′(v)

g(v)2
· 1

2
· g(v)

−g′(v)
· g(v) < 2

⇐ 1 < 4.

B.4 The effect of thickness on the welfare of customers

For uniform F,G, k(m) always increases with m . This is shown in file “k-cFG-uniformFG”.

Next, we show that this observation is fairly general, in the sense that it holds under rea-

sonable assumptions on F,G.

Lemma B.15. Suppose f : [0, 1] → R+ is a concave increasing function. Let F (a) ≡∫ a
0
f(x) dx. Then, the function

g(a) =

∫ a
0

(a− x) · f(x)

F (a)

is increasing in a.

Proof. First, observe that

g′(a) = 1−
f(a)

∫ a
0

(a− x)f(x) dx

F (a)2
.

To prove the main claim, we will show that g′(a) > 0, or equivalently,

F (a) >
f(a)

∫ a
0

(a− x)f(x) dx

F (a)

= af(a)− f(a)

F (a)
·
∫ a

0

xf(x) dx,

which we write as

f(a)

F (a)
·
∫ a

0

xf(x) dx > af(a)− F (a). (B.24)
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Let us denote the LHS and the RHS of the above inequality by L(a) and R(a), respectively.

To prove that (B.24) holds for all a ∈ (0, 1), we prove that (i) L′(a) − R′(a) > 0 for all

a ∈ (0, 1), and (ii) lima→0 L(a)−R(a) ≥ 0. This would prove the main claim.

To see why (i) holds, observe that

L′(a)−R′(a) =

(
a
∫ a

0
f(x) dx−

∫ a
0
xf(x) dx

)(
f(a)2 − f ′(a)

(∫ a
0
f(x) dx

) )(∫ a
0
f(x) dx

)
2

.

Concavity of f implies that the RHS of the above equality is positive.

To prove (ii), we use L’Hôpital’s Rule and compute

lim
a→0

L(a)−R(a) = lim
a→0

f ′(a)
(∫ a

0
xf(x) dx

)
f(a)

+ af(a)

Observing that the RHS is non-negative concludes the claim.

B.4.1 Uniform F , relaxed G

We show that k(m) is always increasing in m if (i) G has a concave and decreasing PDF. (ii)

G has an increasing PDF. These are of course only two cases that we can provide a fairly

short proof for, and we expect this to hold more generally.

The proof starts in file “k-cFG-uniformF”, where we see that

k′(m) > 0⇔ J ′′(1− k) <
2J ′(1− k)m+ 2

km
,

where J ≡ G−1. We write the above condition in terms of G as follows

k′(m) > 0⇔ −G
′′(v)

G′(v)3
<

2m
G′(v)

+ 2

km

⇔ −G
′′(v)

G′(v)2
<

2 + 2G′(v)
m

k
, (B.25)

where v ≡ J(1− k).

First, observe that if G′′(v) > 0, then (B.25) always holds, and therefore part (ii) of the

claim is proved. In the rest of the argument, we show why part (i) holds. We show that
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k′(m) > 0 holds if the following condition holds, which is stronger than (B.25):

−G′′(v)

G′(v)2
<

2

k
,

Note that k = 1−G(v), and therefore we can write the above condition as

−G′′(v)

G′(v)2
<

2

1−G(v)
. (B.26)

Lemma B.14 states that a sufficient condition for the above inequality to hold is that g is

concave and decreasing.

B.4.2 relaxed F , relaxed G

In this section, we give a sufficient condition for k′(m) > 0 for when F has a decreasing PDF

and G satisfies the assumption of subsubsection B.4.1. According to “k-cFG-relaxedFG”, a

sufficient and necessary condition for k′(m) > 0 is

J ′′(1− k)

<
2c′′(i)H ′( λ

m
)m2 + c′′(i)H ′′( λ

m
)km+ 2c′′(i)J ′(1− k)m3 + 2H ′( λ

m
)H ′′( λ

m
) + 2H ′′( λ

m
)J ′(1− k)m

c′′(i)km3 +H ′′( λ
m

)km
.

A lower bound for the RHS of the above inequality is

2c′′(i)J ′(1− k)m3 + 2H ′′( λ
m

)J ′(1− k)m

c′′(i)km3 +H ′′( λ
m

)km
,

which is obtained by removing some of the positive terms from the numerator in the RHS

of the original inequality. There is a simple lower-bound for this term itself, using which we

can rewrite the sufficient condition for k′(m) > 0 as

J ′′(1− k) <
2c′′(i)J ′(1− k)m3 + 2H ′′( λ

m
)J ′(1− k)m

c′′(i)km3 +H ′′( λ
m

)km
=

2J ′(1− k)

k
.

Now, this condition is just the same condition as in (B.26). The rest of the previous analysis

(and the same identical assumption for G) also applies.
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C Proof of Theorem 4.3

This section contains the proof for Theorem 4.3. The proof contains some technical steps.

To help readability, we have stated some of these steps as claims and lemmas, and have

moved the proofs for some of them to the end of this section, in Subsection C.1.

Let S(m) denote the system of equations given by (B.21) and (B.22), for a given m.

Let the function X(m,λ, k) and Y (m,λ, k) denote the LHS of equations (B.21) and (B.22),

respectively. Also, let m0 = 1
−c′(0)F ′(0)

; we will show that m = m0.

The proofs for the next lemmas and claims are given in Subsection C.1.

Lemma C.1. There exists a monopoly equilibrium at m iff m > m0.

For the rest of the proof, it is helpful to extend the domains of the functions c, F,G so

that: (i) their domains contain an interval (−ε, 0) for a ε > 0, and (ii) c remains in C4 and

strictly convex in the extended domain, (iii) F,G remain in C4 in the extended domain, and

(iv) F ′ remains decreasing in the extended domain. It is straight-forward to verify that such

an extension exists. We proceed the rest of the proof assuming that the domains of c, F,G

are extended to satisfy properties (i)-(iv).

Claim C.2. There exists an open interval I = (m1,m2) containing m0 such that S(m) has a

solution at any m ∈ I. Furthermore, there exist unique continuously differentiable functions

λ(m), k(m) : R+ → R such that (λ(m), k(m)) is a solution to S(m), for any m ∈ I.

Note that in the above claim, we are allowing the functions λ(m), k(m) to have a possibly

negative range.

Claim C.3. The following relations hold:

lim
m→m0

k′(m) = 0, lim
m→m0

k′′(m) > 0

lim
m→m0

λ′(m) > 0.

Furthermore, the limits

lim
m→m0

k′′′(m), lim
m→m0

λ′′(m), lim
m→m0

λ′′′(m)

exist and are finite.

Corollary C.4. There exists m3 > m0 such that λ′(m) 6= 0 for any m ∈ (m0,m3).
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To prove Theorem 4.3, we will show that there exists m̂ > m0 such that w′(m) > 0

and e′(m) > 0 hold for all m ∈ (m0, m̂). (Recall that e(m) = k(m)
λ(m)

.) This will be done in

Proposition C.5 and Proposition C.8. The inequalities w′(m) > 0 and e′(m) > 0 also imply

that (uW )′(m) > 0. The latter fact could be proved, e.g., by a straight-forward calculation

of (uW )′(m). We omit this calculation here, and proceed with proving Proposition C.5 and

Proposition C.8.

Proposition C.5. Suppose c(0) = 1, F ′′(r) ≤ 0 for all r in the unit interval. Then there

exists a threshold m̂ such that for all m ∈ (m0, m̂), e′(m) > 0.

Proof. First, we prove the following claims.

Claim C.6. There exists m4 > m0 such that e′(m) exists at all m ∈ (m0,m1).

Proof. First, observe that for all m > m0 we have

e′(m) =
k′(m)λ(m)− λ′(m)k(m)

λ(m)2
.

Because λ(m) > 0 for all m > m0, and because k(m), k′(m) and λ′(m) exist and are finite

for m sufficiently close to m0 (by Claim C.3), e′(m) is exists and is finite for m sufficiently

close to m0.

Claim C.7. limm→m0 e(m) = 0.

Proof. First, observe that

lim
m→m0

e(m) = lim
m→m0

k(m)

λ(m)
= lim

m→m0

k′(m)

λ′(m)
.

L’Hôpital’s Rule is applicable here by Corollary C.4. Next, we compute
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lim
m→m0

k′(m)

λ′(m)
=

lim
m→m0

(
kλc′′(i)H ′′(F (w)) +m(k + λ)c′′(i)H ′ (F (w))− c′(λ) (λH ′′(F (w)) +mH ′(F (w)))−H ′(F (w))2

)
×
{
λH ′′(F (w)) ·

(
k (c′′(i)− J ′′(1− k)) + 2J ′(1− k)

)
+ mH ′(F (w)) ·

(
(k + λ)c′′(i)− kJ ′′(1− k) + 2J ′(1− k)

)
− 2c′(i) ·

(
λH ′′(F (w)) +mH ′(F (w))

)}−1

,

whereH ≡ F−1, J ≡ G−1 and, for notational brevity, we have denoted i(m), k(m), w(m), λ(m)

by i, k, w, λ, respectively. This equation is derived from implicit differentiation of the

equilibrium-characterizing constraints with respect to m. We omit the algebraic details.

The full derivation of this equation is in file “emp-relaxedFG-proof2.m”. We can simplify

the above equation using the fact that c′(i) = − 1
mF ′(w)

. After this simplification, we use the

fact that k, i, λ all approach 0 as m approaches m0 to compute the limit

lim
m→m0

k′(m)

λ′(m)
= 0.

The details of this calculation are given in file “emp-relaxedFG-proof2.m”; we omit these

details in here.

Continuity of e(m) at m0 is ensured by Claim C.7. The rest of the proof is as follows.

We will show that limm→m0 e
′(m) exists and is positive. This would imply that e′(m0) must

also exist, and in fact,

e′(m0) = lim
m→m0

e′(m).

(This is a consequence of L’Hôpital’s Rule. See, for example, [Wikipedia 2017] for a proof.)

Once we have shown this, the proof is complete: because e′(m0) > 0, then there must exists

m̂ such that e′(m) > 0 for m ∈ [m0, m̂], i.e. e(m) is an increasing function over [m0, m̂].

First, observe that for all m > m0 we have

e′(m) =
k′(m)λ(m)− λ′(m)k(m)

λ(m)2
.
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Therefore,

lim
m→m0

e′(m) = lim
m→m0

k′(m)λ(m)− λ′(m)k(m)

λ(m)2
.

The L’Hôpital’s Rule is applicable because limm→m0 k(m) = k(m0) = 0 and limm→m0 λ(m) =

λ(m0) = 0 hold, as we observed in Claim C.2 and its proof. Thereby, we can write

lim
m→m0

e′(m) = lim
m→m0

k′′(m)λ(m)− λ′′(m)k(m)

2λ(m)λ′(m)

= lim
m→m0

k′′′(m)λ(m) + k′′(m)λ′(m)− λ′′′(m)k(m)− λ′′(m)k′(m)

2λ′(m)2 + 2λ(m)λ′′(m)
, (C.1)

where (C.1) is due to a second application of L’Hôpital’s Rule. We can simplify this equality

further and write

lim
m→m0

e′(m) = lim
m→m0

k′′(m)λ′(m)

2λ′(m)2
= lim

m→m0

k′′(m)

2λ′(m)
> 0, (C.2)

where the above relation holds by Claim C.3. This proves the promised claim.

Proposition C.8. Suppose c(0) = 1, F ′′(r) ≤ 0 for all r in the unit interval. Then there

exists a threshold m̂ such that for all m < m̂, w′(m) > 0.

Proof. We show that limm→m+
0
w′(m) > 0 in “file wage-relaxedFG-proof.m”. Continuity of

w′(m) then implies that there exists δ > 0 such that w′(m) > 0 for m ∈ [m0,m0 + δ]. This

proves the claim.

C.1 Missing proofs for the technical claims and lemmas

Proof of Lemma C.1. We say that a pair (p, w) is feasible at m when k(p, w) > 0 holds when

the size of labor pool is m. We say that m (as size of the labor pool) is feasible if there exists

a pair (p, w) which is feasible at m. We will show that m is feasible iff m > m0. This would

prove the claim.

Claim C.9. Suppose (p, p) is feasible for a fixed m. Then, there exists w < p such that

(p, w) is also feasible.

Proof. Let k = k(p, p). There exists w < p such that p+c(mF (w)−k) < 1, by the continuity

of c and F . Because G is continuous and atom-less, (p, w) is feasible.
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Next, we show that if m = 1
−c′(0)F ′(0)

+ δ for some δ > 0, then m is feasible. We prove

this by proving the existence of a feasible (p, w). To do this, we use Claim C.9 and show

that there exists a p such that (p, p) is feasible; that is,

p+ c(mF (p)) < 1. (C.3)

We proceed by showing that there exists p > 0 satisfying (C.3).

Define the function f(p) ≡ p + c(mF (p)). Obseve that f(0) = 1. We next show that

f ′(0) < 0, which would guarantee the existence of a positive p (sufficiently close to 0) that

satisfies (C.3):

f ′(p) = 1 +mF ′(p)c′(mF (p))

⇒f ′(0) = 1 +mF ′(0)c′(0) = 1 +

(
1

−c′(0)F ′(0)
+ δ

)
F ′(0)c′(0) = δF ′(0)c′(0) < 0.

The last inequality is implied by the assumption F ′′(r) ≤ 0, which implies F ′(0) > 0. Given

that f ′(0) = 1, f ′(0) < 0 guarantees that there exists p arbitrary close to 0 such that

p+ c(mF (p)) < 1.

It remains to show that any m ≤ 1
−c′(0)F ′(0)

is not a feasible mass of workers. The proof

is by contradiction. Suppose m is a feasible of workers. Therefore, a monopoly equilibrium

exists. Let (p∗, w∗, k∗) denote the equilibrium parameters, and let i∗ = mw∗ − k∗.The

monopoly equilibrium must satisfy c′(i∗) = −1
mF ′(w∗)

. Then, observe that

c′(i∗) =
−1

mF ′(w∗)
≤ −1

1
−c′(0)F ′(0)

· F ′(0)
= c′(0).

But then, strict convexity of c would imply that c′(i∗) = c′(0). Therefore, i∗ = 0, which also

implies that k∗ = 0. Contradiction.

Proof of Claim C.2. The proof is based on the Implicit Function Theorem. As we mentioned

earlier, we apply the theorem on the system given by (B.21) and (B.22). First, recall that

(B.21) and (B.22) are given by

k · (c′(λ− k)− J ′(1− k))− c(λ− k)−H (λ/m) + J(1− k) = 0,
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and

c′(λ− k) +
H ′ (λ/m)

m
= 0.

Also, recall that the left-hand sides of (B.21) and (B.22) are respectively denoted byX(m,λ, k),

and Y (m,λ, k). Next, we show that (λ, k) = (0, 0) is a solution to S(m0), i.e. X(m0, 0, 0) = 0,

and Y (m0, 0, 0) = 0.

0 · (c′(0)− J ′(1))− c(0)−H (0) + J(1) = 0,

which holds because c(0) = 1, H(0) = 0, and J(1) = 1. Also,

c′(0) +
H ′ (0)

m0

= 0,

which hols because m0 = −1
F ′(0)c′(0)

and H ′(0) = 1
F ′(0)

.

To apply the implicit function theorem, we need to prove that the Jacobian

J(m, k, λ) =

∂X(m,λ,k)
∂λ

∂X(m,λ,k)
∂k

∂Y (m,λ,k)
∂λ

∂Y (m,λ,k)
∂k


is invertible at point (m,λ, k) = (m0, 0, 0). This is done in file “existence-Fcav”. The Implicit

Function Theorem therefore applies, and there exist an open interval I 3 m0 and unique

continuously differentiable functions λ(m), k(m) that solve the system S(m) for all m ∈ I.

Furthermore, the theorem implies the existence of λ′(m) and k′(m) for all m ∈ I.

Proof of Claim C.3. Because λ(m), k(m) are continuously differentiable functions, then we

have limm→m0 k(m) = k(m0) and limm→m0 λ(m) = λ(m0). On the other hand, λ(m0) =

k(m0) = 0 holds, as we showed in the proof of Claim C.2. Using this fact, we prove the

claim in file “relaxedFG-limits”, where we use implicit differentiation with respect to m from

the system S(m) to compute the closed-form expressions for the derivatives and their limits.

Proof of Corollary C.4. This is a consequence of Claim C.3 and continuity of λ′(m).
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D Proof of Theorem 5.1

The proof structure is similar to the proof of Theorem 4.3. First, we need some notation.

We use c1 : R2
+ → R and c2 : R+2 → R to denote the partials of c with respect to its first

and second argument, respectively.

Any monopoly equilibrium must satisfy the following equations

k · (c2(γ, λ− k)− J ′(1− k))− c(γ, λ− k)−H (λ/m) + J(1− k) = 0, (D.1)

c2(γ, λ− k) +
H ′ (λ/m)

m
= 0. (D.2)

These equations are identical to (B.21) and (B.22), but adapted to the new notation for the

cost function. We use the notation S(m, γ) to refer to the above system of equations.

The next lemma shows that mγ = 1
−c2(γ,0)F ′(0)

.

Lemma D.1. For any γ, there exists a monopoly equilibrium at m iff m > 1
−c2(γ,0)F ′(0)

.

The proof is identical the proof of Lemma C.1. For the rest of the proof, we fix a level of

matching technology γ0 and prove the theorem statement for γ0. For notational simplicity,

let m0 = mγ0
.

Next, we present two counterparts for Claim C.2 and Claim C.3 in the proof of Theo-

rem 4.3.

Claim D.2. There exist open intervals Im = (m1,m2) and Iγ = (γ1, γ2) with m0 ∈ Im and

γ0 ∈ Iγ such that S(m, γ) has a solution for any m, γ with m ∈ Im and γ ∈ Iγ. Furthermore,

there exist unique continuously differentiable functions λ(m, γ), k(m, γ) : R+ → R such that

(λ(m, γ), k(m, γ)) is a solution to S(m, γ), for any m, γ with m ∈ Im and γ ∈ Iγ.

The proof for Claim D.2 is similar to the proof of Claim C.2 and is by applying the

Implicit function theorem. We do not repeat the proof here. Note that in the above claim,

we are allowing the functions λ(m, γ), k(m, γ) to have a possibly negative range. We use the

notation λi(m, γ), ki(m, γ) to denote the partials of the functions λ, k with respect to their

i-th argument, for i ∈ {1, 2}. Furthermore, ki,j(m, γ) denotes the cross-partial derivative

with respect to the i-th and j-th arguments (with possibly i = j). Also define ki,j,k(m, γ)

similarly.
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Claim D.3.

k2(m0, γ0) = 0, k2,2(m0, γ0) > 0,

λ2(m0, γ0) > 0.

Furthermore, the limits

lim
m→m0

k2,2,2(m, γ0), lim
m→m0

λ2,2(m, γ0), lim
m→m0

λ2,2,2(m, γ0)

exist and are finite.

Proof. See file “MT.m”.

To prove Theorem 5.1, we will show that there exists m̂ > m0 such that w2(m, γ0) > 0

and e2(m, γ0) > 0 hold for all m ∈ (m0, m̂). This will be done in Proposition D.4 and

Proposition D.5 (counterparts to Proposition C.5 and Proposition C.8).

The inequalities w2(m, γ0) > 0 and e2(m, γ0) > 0 also imply that (uW )2(m, γ0) > 0. We

proceed with proving Proposition D.4 and Proposition D.5.

Proposition D.4. There exists a threshold m̂ such that for all m ∈ (m0, m̂), e2(m, γ0) > 0.

Proof. First, observe that for all m > m0 we have

e2(m, γ0) =
k2(m, γ0)λ(m, γ0)− λ2(m, γ0)k(m, γ0)

λ(m, γ0)2
.

Therefore,

lim
m→m0

e2(m, γ0) = lim
m→m0

k2(m, γ0)λ(m, γ0)− λ2(m, γ0)k(m, γ0)

λ(m, γ0)2
.

The L’Hôpital’s Rule is applicable because the following hold: limm→m0 k(m, γ0) = k(m0, γ0) =

0 and limm→m0 λ(m, γ0) = λ(m0, γ0) = 0. (The proof is similar to the proof of Claim C.2).
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Thereby, we can write

lim
m→m0

e2(m, γ0) (D.3)

= lim
m→m0

k2,2(m, γ0)λ(m, γ0)− λ2,2(m, γ0)k(m)

2λ(m, γ0)λ2(m, γ0)

= lim
m→m0

k2,2,2(m, γ0)λ(m, γ0) + k2,2(m, γ0)λ2(m, γ0)− λ2,2,2(m, γ0)k(m, γ0)− λ2,2(m, γ0)k2(m, γ0)

2λ2(m, γ0)2 + 2λ(m, γ0)λ2,2(m, γ0)
,

(D.4)

where (D.4) is due to a second application of L’Hôpital’s Rule. We can simplify this equality

further and write

lim
m→m0

e2(m, γ0) = lim
m→m0

k2,2(m, γ0)λ2(m, γ0)

2λ2(m, γ0)2
= lim

m→m0

k2,2(m, γ0)

2λ2(m, γ0)
> 0, (D.5)

where the above relation holds by Claim D.3. This proves the promised claim.

Proposition D.5. There exists a threshold m̂ such that for all m < m̂, w2(m, γ0) > 0.

Proof. We show that w2(m0, γ0) > 0 in file “MT.m”. Continuity of the function w2(·, ·) then

implies that there exists δ > 0 such that w2(m, γ0) > 0 for m ∈ [m0,m0 + δ]. This proves

the claim.

E Preliminary results on duopoly

E.1 Notation

When referring to the customer composition of a subgame equilibrium Σ = (P,A), we

typically use the variable k = (k1, k2), when there is no risk of confusion. Furthermore, we

usually use the variable k to denote k1 + k2. Similarly, we typically use the variables pf , wf

to denote the price and wage at firm f in the payment profile P.

Given Σ, we also define the notion of the aggregate cost that customers face at firm f to

be pf + c(if ), where if is the number of idle workers who accept offers from firm f in Σ. We

typically use the variable bf to denote pf + c(if ).

In the analysis we sometimes consider a variable other than Σ, typically Σ′, to denote a

subgame equilibrium. In such cases, we will use a notation similar to the above notation;

e.g., p′f , w
′
f will denote price and wage at firm f and k′f will denote the rate of customers

who join firm f in Σ′.
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The firm’s demand function The function D : [0, 1]2 → [0, 1] is the demand function of

customers. D(b1, b2) determines the mass of customers demanding to join firm 1 assuming

that the aggregate cost at firm f is bf . By the symmetry of our model, D(b2, b1) is the mass

of customers demanding to join firm 2. This function has a simple geometric representation,

depicted in Figure 11. Each point (x, y) in the unit square represents a customer with with

valuation (v1, v2) defined as

v1 = σx+ (1− σ)y,

v2 = σx+ (1− σ)(1− y).

Line l1 corresponds to the customers who earn 0 payoff from joining firm 1. More precisely,

l1 is the line σx+ (1− σ)y = b1. Similarly, line l2 corresponds to the customers who earn 0

payoff from joining firm l2, i.e. the line σx + (1 − σ)(1 − y) = b2. The red shaded area is

D(b1, b2), and the blue shaded area is D(b2, b1). The function D, obviously, has a closed-form

expression in terms of b1, b2.

Figure 11: A Graphical representation for the demand function

E.2 Preliminaries

Lemma E.1. In any non-trivial subgame equilibrium Σ = (P,A), there exists a cutoff r∗

such that all workers with r < r∗ choose to accept offers from both firms and all workers with

r ∈ (r∗,max{w1, w2}] choose to accept offers only from the firm with the maximum wage. If

case w1 = w2, then r∗ = w1.

Proof of Lemma E.1. If w1 = w2, the claim is proved because any individual worker who

joins only one firm could strictly increase her payoff by joining both firms. Then, suppose
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without loss of generality that w1 > w2. Any worker who accepts offer from firm 2 in Σ

should also accept offers from firm 1: if not, she can increase her payoff by accepting offers

also from firm 1. Therefore, the set of workers could be partitioned into 3 subsets: workers

of the high type, who accept offers only from firm 1, workers of the low type, who accept

offers from both firms, and workers of the null type, who accept offers from no firm. It is

straight-forward to see that a worker with outside option r is of the null type iff r ≥ w1.

First, we show that if a worker, namely worker 1, with option r1 accepts offers from both

firms, then any other worker, namely worker 2, with outside option r2 < r1 also accepts offers

from both firms. Suppose that worker 1 switches to the strategy of accepting offers from

firm 1 only. Let ∆[tf ] denote the additional amount of time that worker will spend working

at firm f after she switches. (∆[tf ] < 0 means that the worker spends less time working at

f) Similarly, let ∆[t∅] denote the additional amount of time that the worker is unemployed

after she switches. Because workers choose actions optimally, we must have

r1 ·∆[t∅] + w1 ·∆[t∅] + w2 ·∆[t∅] < 0.

On the other hand, it is straight-forward to observe that ∆[t∅] > 0, that is, worker 1 spends

more time unemployed after her switch. Therefore, we should have

r2 ·∆[t∅] + w1 ·∆[t∅] + w2 ·∆[t∅] < 0.

This implies that worker 2 can increase her steady-state earnings if she accepts offers from

both firms, which is a contradiction.

Now, let r∗ be the infimum of r over all workers with outside option r who accept offers

from firm 1. (Note that there exist such workers, because there is a positive mass of workers

with outside option greater than w2) This finishes the proof.

Definition E.2. The cutoff representation of a non-trivial subgame equilibrium Σ = (P,A)

is given by (P, r,k), where

(i) k denotes the customer composition given by A

(ii) r denotes the cutoff obtained by applying Lemma E.1 on Σ.

Observe that if the cutoff representations of two non-trivial subgame equilibria are equal,

then those subgame equilibria are equal.
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Definition E.3. The extended cutoff representation of a non-trivial subgame equilibrium

Σ = (P,A) is given by (P, r, θ,k), where

(i) (P, r,k) is the cutoff representation of Σ.

(ii) θ = λ−mr
k−f+λ

, where f = arg max
f∈F
{wf} and λ = mwf .

Observe that θ = 0 when w1 = w2. Variable θ has a simple interpretation: a fraction θ

of the mass of idle workers accept offers only from the firm who offers the maximum wage.

The value of θ (given in Definition E.3) is derived by solving the equation

mr = (λ− k)(1− θ) + kf (1− θ) + k−f ,

which computes the mass of workers who accept offers from both firms. The following fact

uses the above equation to write r in terms of the rest of the parameters involved.

Fact E.4. Let Σ = (P, r, θ,k) be a non-trivial subgame equilibrium with w1 ≥ w2. Then,

r =
(λ− k)(1− θ) + k1(1− θ) + k2

m
.

Lemma E.5. Let Σ = (P, r, θ,k) be a non-trivial subgame equilibrium with w1 ≥ w2. Then,

we must have (1− θ)(mw1 − k) = mw2 − k.

Proof. The proof is trivial when w1 = w2. Without loss of generality, suppose w1 > w2.

Observe that r, θ are related by

r =
(λ− k)(1− θ) + k1(1− θ) + k2

m
, (E.1)

which holds because exactly a fraction 1− θ of the busy workers at firm 1 and all the busy

workers at firm 2 must be accepting offers from both firms.

Define c2 = c(i · (1− θ)). Now, observe that

θ = 1− c−1(c2)

mw1 − k
, (E.2)

where recall that i = λ− k, by definition.

Next, we plug in (E.1) and (E.2) into worker’s indifference condition and solve the equa-
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tion for w1. This lets us write w1 as follows:

w1 =
c−1(c2) · (k2 −mw1) + k1k2 + (k2 −mw1)(k2 −mw2)

k1m

Rearranging the terms of the above equality implies

0 = (k2 −mw1)(c−1(c2) + k1 + k2 −mw2).

Now, note that k2 < mw2 ≤ mw1 must always hold, and therefore, according to the above

equality, we must have

c−1(c2) = mw2 − k,

which implies c2 = c(mw2 − k).

Proposition E.6. In any non-trivial subgame equilibrium Σ = (P,A), the waiting cost

incurred by customers at firm f is c(mwf − k).

Proof. The proof is a direct consequence of Lemma E.5.

E.3 Missing proofs from Subsection 6.1

Lemma E.7. Consider the following continuous-time stochastic process with state space

V = {0, 1, 2}. The transition rate from state 0 to i is λi, for i ∈ {1, 2}. After a transition

from state 0 to state i, the process remains at state i for a unit of time, after which it returns

to state 0. Let πi denote the fraction of time that the process spends at state i.21 Then,

πi = λi
1+λ1+λ2

for i > 0 and π0 = 1
1+λ1+λ2

.

Proof. Straight-forward LLN arguments imply that π1 = π2 · λ1λ2 and π0(λ1 + λ2) = π1 + π2.

These two equations together with
∑2

i=0 πi = 1 prove the claim.

Fact E.8. Given a subgame equilibrium Σ = (P,A), there is no worker such that for that

worker, there are only two actions S = {1}, T = {2} that both provide her the maximum

steady-state earnings.

Proof. Proof by contradiction. Note that the worker’s payoff under either action should be

positive, because otherwise, the action ∅ attains the same level of steady-state earnings,

which is a contradiction. Now, suppose that w2 ≤ w1 without loss of generality. It is

21To state this more precisely, one should define πi,t to be the fraction of time that the process spends at
state i from the start of the process until time t, and then define πi = limt→∞ πi,t.
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straight-forward to see that the action {1, 2} provides a larger level of steady-state earnings

than the action {2}, which is a contradiction.

Proof of Proposition 6.2. The proof is by contradiction. Suppose there exist two non-trivial

subgame equilibria, namely Σ = (P,A), and Σ′ = (P,A′). Let k and k′ respectively denote

the customer compositions in A and A′. Suppose k = (k1, k2) and k′ = (k′1, k
′
2), and let

k = k1 + k2 and k′ = k′1 + k′2.

By Lemma E.5, the waiting cost that customers incur at firm f in Σ is equal to c(mwf−k).

Let bf = pf + c(mwf − k) denote the aggregate cost that customers incur at firm f in Σ.22

Define b′f similarly for Σ′. Furthermore, with slight abuse of notation, we define the function

bf : R→ R as

bf (k̂) = pf + c(mwf − k̂),

where we have taken k̂ to be a variable. Using this notation, we write the market clearing

condition, which states that

k̂ = D(b1(k̂), b2(k̂)) +D(b2(k̂), b1(k̂)).

(Recall the definition of the demand function D from Subsection E.1.) In simple words, the

condition says that the mass of busy drivers must be equal to the rate of customers who are

served. Observe that the LHS is strictly increasing in k̂, whereas the RHS is decreasing in k̂.

Therefore, this equation has a unique solution, which we denote by k∗. Note that we must

have k = k∗ and k′ = k∗. Therefore, k = k′. But then, this implies that bf = b′f for all f

(because b′f = p′f + c(mw′f − k′), by definition). Therefore,

kf = D(bf (k), b−f (k)) = k′f

must hold for all f , which implies that k = k′. This, together with Lemma E.5 imply that

the cutoff representations of Σ,Σ′ are identical, which means that Σ,Σ′ are identical.

Proposition E.9. For any payment profile P and any firm f ∈ F , there exists at most one

trivial subgame equilibrium Σ = (P,A) satisfying kf > 0.

Proof. Suppose Σ is such a trivial subgame equilibrium, and let k denote the customer

composition in A. In Σ, all workers with outside option less than w must be accepting

22When we defined the notion of worker composition, we noted that b(f) denotes the mass of workers busy
at firm f . This notation is not used in this proof and is irrelevant to bf .
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the offers of firm f , and all other workers should be rejecting them. Therefore, any trivial

subgame equilibrium in which f serves a non-zero rate of customers has the same worker

composition as Σ.

On the other hand, see that the waiting cost that customers incur at firm f in Σ is equal

to c(mwf − k). Recall the market-clearing condition (3.1), according to which we can write

k = 1− pf − c(mwf − k)

for Σ. Observe that the LHS is strictly increasing in k, while the RHS is decreasing. There-

fore, this equation has a unique root, k. This implies that any trivial subgame equilibrium

in which f serves a non-zero rate of customers must have the same customer composition as

Σ. This completes the proof.

E.3.1 The selection rule

First, we discuss an ascending process that finds the Σ[P]. We then present the missing

proofs.

By Proposition E.6, the waiting cost that customers at firm f incur in Σ = (P,A) is

equal to c(mwf −k). Let bf = pf + c(mwf −k). Further more, with slight abuse of notation,

we define the function bf : R→ R as

bf (k̂) = pf + c(mwf − k̂),

where we have taken k̂ to be a variable. Using this notation, we write the market clearing

condition

k̂ = D(b1(k̂), b2(k̂)) +D(b2(k̂), b1(k̂)). (E.3)

Observe that the LHS is strictly increasing in k̂, where as the RHS is decreasing in k̂. Further

more, the RHS is at most 1 at k̂ = 0, and is 0 at k̂ = 1. So, the above equation has a unique

solution, which we denote by k∗.

Definition E.10. Define the ascending process A∗ as follows: the process starts at k̂ = 0

and increases k̂ until (E.3) holds.

Observe that the ascending process stops at k̂ = k∗. Given k∗, we define Σ[P] = (P,A)

as follows:
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1. The customer composition k satisfies k1 = D(b1(k∗), b2(k∗)) and k2 = D(b2(k∗), b1(k∗)).

Furthermore, k = k∗, where recall that k ≡ k1 + k2 by definition.

2. If kf = 0 for some firm f , then a non-trivial subgame equilibrium does not exist (see

Lemma E.11). The selection rule chooses the trivial subgame equilibrium in which

workers do not accept offers from firm f . Workers with outside option r accept offers

of −f iff k−f > 0 and r < w−f .

3. If k1, k2 > 0, then a non-trivial subgame equilibrium exists. Let (P, r∗, θ,k) denote the

extended cutoff representation of Σ[P]. Workers with outside option r ∈ [0, r∗] accept

offers from both firms. Workers with outside option r ∈ (r∗,max{w1, w2}] accept offers

from firm 1 only. The rest of the workers accept offers from neither of the firms.

The steady-state subgame equilibrium constructed above, Σ[P], is the unique steady-state

non-trivial subgame equilibrium, if one exists under P. Otherwise, it will be one of the at

most two trivial steady-state subgame equilibria.

Lemma E.11. The subgame equilibrium found by ascending process A∗, namely Σ[P] = (P,A),

serves the highest rate of customers among all possible subgame equilibria induced by P.

Furthermore, if there exists a non-trivial subgame equilibrium under P, then Σ[P] is that

equilibrium.

Proof. First, we prove the second part. Suppose a non-trivial subgame equilibrium exists,

namely Σ′ = (P,A′). We will show that Σ′ = Σ[P]. Consider the point in the ascending

process when k̂ = k′. At this point, we must have

bf (k̂) = b′f , ∀f ∈ F ,

where b′f = pf + c(mwf − k′). Therefore, we must also have

D(b1(k̂), b2(k̂)) = k′1,

D(b2(k̂), b1(k̂)) = k′2.

This implies that the ascending process must stop at k̂ = k′, i.e. (E.3) is satisfied when k̂ = k′.

Thereby, the ascending process finds a non-trivial subgame equilibrium. Proposition 6.2 then

would imply that Σ[P] = Σ′.

The proof for the first part is done for two separate cases: either Σ[P] is a non-trivial

subgame equilibrium or not.
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Case 1. Suppose that Σ[P] is a non-trivial subgame equilibrium. The proof is by con-

tradiction: consider a trivial subgame equilibrium, namely Σ′ = (P,A′), for which k′ ≥ k.

Without loss of generality suppose that k′2 = 0 in Σ′. This also implies that k′1 = k′. Observe

that b′1 = p1 + c(mw1 − k′). Therefore, we must have

b′1 = p1 + c(mw1 − k′) ≥ p1 + c(mw1 − k) = b1.

But b′1 ≥ b1 implies that k′ < k. Contradiction.

Case 2. Suppose that Σ[P] is a trivial subgame equilibrium. Without loss of generality,

suppose that k2 = 0. There is at most one other subgame equilibrium, namely Σ′ = (P,A′),

for which k′1 = 0. For the sake of contradiction, suppose that Σ 6= Σ′ and k ≤ k′. Without

loss of generality suppose that k′1 = 0 in Σ′. Observe that k′2 = k′ and k1 = k. By the

definition of the ascending process that finds Σ[P], we must have

b2 = p2 + c((mw2 − k)+) ≥ 1, (E.4)

where the notation (x)+ denotes the positive part of x. On the other hand, note that

b′2 = p2 + c(mw2 − k′) ≥ p2 + c((mw2 − k)+) = b2 ≥ 1,

where the last inequality holds by (E.4). We just showed that b′2 ≥ 1. Therefore, we must

have k′ = k′2 = 0. Consequently, Σ = Σ′. Contradiction.

Proof of Fact 6.5. First, we show that Σ is non-trivial unless both firms serve 0 customers.

For contradiction, suppose that firm 1 serves a positive rate of customers while firm 2 serves

0 customers. Observe that firm 2 gains a positive profit if it slightly increases wage, which

gives a contradiction. Therefore, for the rest of the proof we can assume that Σ is non-trivial.

Let kf denote the steady-state rate of customers who join firm f in Σ, and let k = k1 +k2.

Also, let p, w respectively denote the price and wage at both firms. Define bf = p+c(mw−k),

and observe that b1 = b2. Define b = b1. Now, observe that k1 = D(b, b) and k2 = D(b, b)

(which holds because all workers accept offers from both firms in Σ).

E.4 Other selection rules

The analysis that we presented for Theorem 6.6 was under a specific tie-breaking used by

workers: in case the maximum payoff for a worker is attained by multiple actions, the worker
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chooses the action with the smallest size. We call this the Minimum tie-breaking rule. In

here, we consider a different tie-breaking rule, which we call the Maximum tie-breaking rule.

We will show that under the Maximum tie-breaking rule, any payment profile always induces

a unique subgame equilibrium. (Lemma E.14) Therefore, under this tie-breaking rule, the

selection rule would choose the only existing option, the unique subgame equilibrium.

E.4.1 The Maximum tie-breaking rule

The Maximum tie-breaking rule is defined as follows: where there are multiple actions under

which the worker attains her maximum payoff, the worker first removes all actions that

contain wage offers below her outside option. Then, she chooses the action with the largest

size that offers her the maximum payoff.

We will show that under the Maximum tie-breaking rule, any payment profile always

induces a unique subgame equilibrium. This is proved in the in the following lemmas.

Lemma E.12. Suppose the Maximum tie-breaking rule is used by workers. Then, if a

payment profile P induces a non-trivial subgame equilibrium Σ = (P,A), it will induce no

trivial subgame equilibrium Σ′ = (P,A′) .

Proof. The proof is by contradiction. Suppose Σ′ exists. Without loss of generality, suppose

w′1 ≥ w′2.

The proof is done in two cases: either k′1 = 0, or k′2 = 0.

Case 1 Suppose k′1 = 0. We consider two cases: (i) k ≤ k′ and (ii) k > k′. First, suppose

k ≤ k′ (Recall Proposition E.6) Firm 1 offers an aggregate cost of b′1 = p1 + c(mw1 − k′) to

customers in Σ′ and an aggregate cost of b1 = p1 + c(mw1− k) to customers in Σ. Note that

b1 ≤ b′1 must hold because k ≤ k′. Since 1 does not offer a higher aggregate cost in Σ, and

since k2 > 0 in Σ, then k > k′. Contradiction. So, case (ii) holds, i.e. k > k′. This implies

that b1 > b′1 and b2 > b′2. (Note that firm 2 offers an aggregate cost b′2 = p2 + c(mw2− k′) to

customers in Σ′, but no customers join this firm.) This implies that k ≤ k′. Contradiction.

Case 2 Suppose k′2 = 0. In this case, Firm 2 offers an aggregate cost of b′2 = p2 + c(mw′2−
k′
w′2
w′1

) to customers in Σ′. (The reason is that mw′2 workers would accept offers from firm 2

under the Maximum tie-breaking rule, k′
w′2
w′1

of whom will be busy working at firm 1)

We consider two cases for the rest of the proof: (i) k ≤ k′ and (ii) k > k′. First,

suppose case (i) holds. Then, firm 1 offers lower aggregate cost in Σ, which implies k > k′.
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Contradiction. So, suppose case (ii) holds. Then, both firms offer higher aggregate costs in

Σ than in Σ′. This implies that k < k′. Contradiction.

Lemma E.13. Suppose the Maximum tie-breaking rule is used by workers. Then, a payment

profile P induces at most one trivial subgame equilibrium.

Proof. The proof is similar to the proof of Lemma E.12.

Lemma E.14. Suppose the Maximum tie-breaking rule is used by workers. Then, a payment

profile P induces a unique subgame equilibrium.

Proof. By Lemma E.12, if a payment profile induces a non-trivial subgame equilibrium, it

will induce no trivial subgame equilibrium. On the other hand, Proposition 6.2 implies that

any payment profile induces at most one non-trivial subgame equilibrium. Therefore, if a

payment profile induces a non-trivial subgame equilibrium, it will induce no other subgame

equilibrium. So, suppose a payment profile induces no non-trivial subgame equilibrium.

Then, it should induce at most one trivial subgame equilibrium, by Lemma E.13. Observing

that such a payment profile indeed induces a trivial subgame equilibrium (which could be

the ∅ subgame equilibrium) completes the proof.

E.4.2 (Re-)Defining the firms’ actions as allocation choices

A classic way to handle failure to launch problems in the two-sided platforms literature is

redefining the actions of the platforms as quantity choices. We can repeat the same exercise

here by defining the firm f ’s action as choosing the parameter kf (the rate of customers who

join the firm). After the vector (k1, k2) is fixed, then each firm f chooses price and wage to

maximize profit subject to serving precisely kf customers. We can show that, given (k1, k2),

there is a unique tuple (pf , wf ) for each firm f that maximizes the firm’s profit subject to

choosing price and wage. (We emphasize that the choices of pf , wf would not depend of the

choices of p−f , w−f , so long as firm −f is committed to serving k−f customers.)

After redefining the firms’ choices as above, we can compare the monopoly and duopoly

equilibria as before. The result is that in thin markets, the firm chooses to serve a smaller

rate of customers under the duopoly equilibrium (and with a higher price). Given the

definition of G, this also implies that the customers’ average welfare is lower under the

duopoly equilibrium when the market is thin.
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F Proof of Theorem 6.6

The proof involves several steps. It helps to go over a brief proof sketch before presenting

the formal proof. We start by stating a system of (sufficient) conditions than any duopoly

equilibrium must satisfy. (Subsection F.1) In fact, these conditions are the sufficient and

necessary conditions for a local duopoly equilibrium , i.e. a duopoly equilibrium in which

no firm has incentive to deviate from its payment profile to a another “nearby” payment

profile. We then show that these conditions have a unique solution in the interval (m, m̂).

The system of equations that characterize the local duopoly equilibrium has a closed form

solution; we use the closed-form solution to prove the claim of the theorem for the local

duopoly equilibrium. (Subsection F.2) In the last step of the proof, we show that this

unique solution in fact represents a (global) duopoly equilibrium. (Subsection F.3)

F.1 Local duopoly equilibrium

Definition F.1. A non-trivial subgame equilibrium Σ = (P,A) is called a local duopoly

equilibrium if there exists an open ball B ⊂ R2×R2 around P = (P1,P2) such that for any

firm f and any P = (Pf ,P−f ) with P ∈ B, we have Πf (Σ[P]) ≥ Πf (Σ[P]).

Fact F.2. In Definition F.1, when given a non-trivial subgame equilibrium Σ, one can always

choose the ball B such that any P ∈ B induces a non-trivial subgame equilibrium, which will

also be unique by Proposition 6.2. Therefore, Σ[P] would be the unique non-trivial subgame

equilibrium under P.

We use Fact F.2 to write the conditions that characterize a local duopoly equilibrium.

First, we need to define a notation. Let D : R2×R2 → R+ be defined as follows: for any pay-

ment profile P = (P1,P2), D(Pf ,P−f ) is the steady-state rate of customers who join firm f

in Σ[P].
23 For notational simplicity, we sometimes use D(p1, w1; p2, w2) to denote D(P1,P2),

where P1 = (p1, w1) and P2 = (p2, w2). Also, we use the notations D1(p1, w1; p2, w2) and

D2(p1, w1; p2, w2) respectively to denote the derivatives of D with respect to its first and

second argument, evaluated at the payment profile (p1, w1; p2, w2)

We are now ready to state the conditions which characterize a local duopoly equilibrium.

23Note that we are using the symmetry of the customers’ demand for the two firms in writing such a
functional form for determining the rate of customers who join a firm.
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Proposition F.3. A subgame equilibrium Σ = (P,A) is a local duopoly equilibrium if and

only if it satisfies

k1 = −D1(p1, w1; p2, w2) · (p1 − w1), (F.1)

k1 = D2(p1, w1; p2, w2) · (p1 − w1), (F.2)

k1 = D(p1, w1; p2, w2), (F.3)

k2 = −D1(p2, w2; p1, w1) · (p2 − w2), (F.4)

k2 = D2(p2, w2; p1, w1) · (p2 − w2), (F.5)

k2 = D(p2, w2; p1, w1). (F.6)

Proof. First, we show that any local duopoly equilibrium must satisfy the given conditions.

(F.1) and (F.2) are the FOCs of firm 1 for price and wage, respectively. (F.3) is a balance

equation: on the LHS we have the rate of customers who join the firm, and on the RHS we

have the rate of customers who gain positive payoff from joining the firm. This could also

be interpreted as a market clearing condition. Equations (F.4),(F.5), and (F.6) are the same

equations but written for firm 2.

Next, we show that if the given equations are satisfied for a given Σ, then it is a lo-

cal duopoly equilibrium. Observe that the FOCs for firm f imply that ∇Πf (pf , wf ) = 0.

This guarantees the existence of a ball B around P that satisfies the condition given in

Definition F.1.

Corollary F.4 (of Proposition F.3). If the tuples (p1, w1, k1) and (p2, w2, k2) with k1, k2 > 0

satisfy the conditions given in Proposition F.3, then the payment profile P = ((p1, w1), (p2, w2))

induces a non-trivial subgame equilibrium Σ which is also a local duopoly equilibrium.

Proof. The proof is similar to the proof of the second part of Proposition F.3; in addition to

that, observe that conditions (F.3) and (F.6) guarantee that the payment profile P induces

a non-trivial subgame equilibrium.

Proposition F.5. A subgame equilibrium Σ = (P,A) with Pf = (p, w) for f ∈ F and

k = (k1, k2) = (k/2, k/2) is a symmetric local duopoly equilibrium if and only if it satisfies

k/2 = −D1(p, w; p, w) · (p− w), (F.7)

c′(mw − k) =
−1

m
, (F.8)

k/2 = D(p, w; p, w). (F.9)
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Proof. First, we show that a local duopoly equilibrium satisfies the given conditions. (F.7)

is the FOC for price, which is identical for both firms by symmetry. (F.9) is the balance

equation, which is identical for both firms. On its LHS we have the rate of customers who

join the firm, and on its RHS we have the rate of customers who gain positive payoff from

joining the firm. This condition could also be interpreted as a market clearing condition.

To derive (F.8), observe that if (F.8) does not hold, then the firm could increase its profit

by changing price and wage: if c′(mw1 − k) > −1
m

, then firm 1 could increase its profit by

decreasing wage by some sufficiently small ε > 0 and decreasing price by a positive ε′ < ε,

while doing this so that the aggregate cost offered to its customers does not change. Hence,

the rate of the customers that the firm serves would not change, but the firm’s commission

fee would go up, and therefore, the firm’s profit. If c′(mw1 − k) < −1
m

, then the same could

be done, but by increasing wage and price. Condition (F.8) could also be derived in another

way, similar to what we showed in Proposition B.3 for the case of monopoly: the FOC of a

firm with respect to wage is

k/2 = D2(p, w; p, w) · (p− w). (F.10)

Equating the RHS of the above equation with the RHS of (F.7) implies (F.8). This is shown

in files “duo-focp” and “duo-focw”, which compute the FOCs with respect to price and wage.

The RHS of the FOCs should be equal (because their left-hand sides are equal); equating

the right-hand sides implies (F.8).

Next, we show that if a subgame equilibrium Σ = (P,A) satisfies the above conditions,

then it should be a local duopoly equilibrium. To this end, we prove that (F.7) and (F.8)

together imply that the FOC of a firm f with respect to wage holds. This is is derived from

the same exercise that we did before: we saw that equating the right-hand sides of (F.7) and

(F.10) implies (F.8). Similarly, we show that (F.7) and (F.8) together imply (F.10). This is

shown in file “retrieving-focw ”.

Corollary F.6 (of Proposition F.5). If the tuple (p, w, k) with k > 0 satisfies the conditions

given in Proposition F.5, then the payment profile P = ((p, w), (p, w)) induces a non-trivial

subgame equilibrium Σ which is also a local duopoly equilibrium.

Proof. The proof is similar to the proof of the second part of Proposition F.5; in addition to

that, observe that (F.9) guarantees that the payment profile P induces a non-trivial subgame

equilibrium.

We also need to define some notation for the notion of monopoly equilibrium. We define
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the monopoly equilibrium in our setting by removing firm 2 and letting firm 1 to choose its

optimal price and wage; the definition of the monopoly equilibrium the same as in Section 3.

To help readability, we repeat the conditions that characterize the monopoly equilibrium,

using the demand function D. We let D(p, w;∞, 0) denote the rate of customers who join

firm 1 when its payment profile is (p, w) and firm 2 is removed. Note that removing firm 2

is equivalent to defining the payment profile for firm 2 to be (∞, 0).

Proposition F.7. A tuple (p, w, k) defines a monopoly equilibrium under firm 1 with p, w

being the price and wage offered by firm 1 and k being the rate of customers who join the

firm, if and only if the tuple satisfies the following conditions:

k = −D1(p, w;∞, 0) · (p− w), (F.11)

c′(mw − k) =
−1

m
, (F.12)

k = D(p, w;∞, 0). (F.13)

Proof. The proof is followed from our analysis of the monopoly equilibrium in Section 4.

Definition F.8. Given m, let DE(m) denote the system of three equations given in Propo-

sition F.5, and let ME(m) denote the system of three equations given in Proposition F.7.

Lemma F.9. Let m0 = 1
−c′(0)

. When m ≤ m0, there is no tuple (p, w, k) with k > 0 that

satisfies DE(m) or ME(m).

Proof. The proof is based on equations (F.8) and (F.12). First, suppose that m ≤ m0 and

there exists a tuple (p, w, k) with k > 0 that satisfies DE(m). Define i = mw− k. Note that

i ≥ 0 must hold, otherwise the (p, w, k) is not a valid solution, since the argument of c falls

outside of its domain. Furthermore, i > 0 should hold, otherwise k > 0 cannot hold because

c is a standard cost function.

Because c is convex, its derivative is increasing. Therefore, c′(i) > c′(0) must always

hold, which implies that −1
m
> c′(0). Consequently, m > − 1

c′(0)
holds, which proves the claim

for the system DE(m). The proof for the system ME(m) is identical.

F.2 Proving the theorem’s claim for local equilibria

We set m = m0. Recall from Lemma F.9 recall that there is no monopoly or duopoly

equilibrium when m ≤ m̂. In this step of the proof, we show the existence of m̂ > m0 such

that for any m ∈ (m, m̂), the following holds: (i) there is unique solution to DE(m), which
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we denote by the tuple (p
duo

(m), w
duo

(m), k
duo

(m)), (ii) there is unique solution to ME(m),

which we denote by the tuple (pmon(m), wmon(m), kmon(m)), and (iii) p
duo

(m) > pmon(m) and

uC
duo

(m) < uC
mon

(m).

We do not set the value for m̂ now; its existence would be proved by the end of the proof.

Lemma F.10. There exists m′ such that for all m ∈ (m,m′), there exists a unique monopoly

equilibrium at m.

Proof. First, observe that for any m > m, there exists at least one monopoly equilibrium at

m. This is implied by Lemma C.1. To prove the existence of m′ and proving the uniqueness

of equilibrium in the interval (m,m′), we just find the closed-form expressions for all the

(possibly complex) roots of ME(m). (See file “ME-sols”) This system reduces to an equation

of degree 3 in p, and therefore, there are 3 (possibly complex) solutions to the system . We

retrieve the three solutions. Let k1(m), k2(m), k3(m) denote the values that each of these

solutions assign to the variable k, as a function of m. We observe that k1(m) ≡ 0, and

limm→m0 k
2(m) > 0; this rules out two of the solutions in an interval (m,m′), when m′ is

chosen to be sufficiently close to m. Therefore, the exists at most one monopoly equilibrium

in the interval (m,m′). This result, together with the first part of the proof prove the

claim.

Lemma F.11. There exists m′ such that for all m ∈ (m,m′), there exists a unique symmetric

local duopoly equilibrium at m.

Proof. First, we need to recall a notation from Subsection E.1: D : [0, 1]2 → [0, 1] is the

demand function of customers when in terms of the aggregate costs that the firms offer,

i.e. D(b1, b2) determines the mass of customers demanding to join firm 1 assuming that the

aggregate cost at firm f is bf .

We do not set the value of m′ immediately, its value will be set during the proof. Fix m,

and consider a continuum of subgame equilibria, {Σβ : β ∈ [0, β̄]}, defined as follows: β̄ < 1

is a positive constant which we will define later, at the same time that we define m′. Σβ is

a subgame equilibrium defined as follows. The variable bβ ≡ 1− β represents the aggregate

cost that is offered to customers in Σβ. Therefore, Σβ is just the ∅ subgame equilibrium for

β = 0. For positive β, Σβ = (Pβ,Aβ) is defined to be the symmetric subgame equilibrium

with customer composition

kβ = (kβ1 , k
β
2 ) = (D(bβ, bβ), D(bβ, bβ))
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and payment profile Pβ = ((pβ, wβ), (pβ, wβ)) such that

pβ + c(mwβ − kβ) = bβ, (F.14)

c′(mwβ − kβ) =
−1

m
. (F.15)

where kβ = kβ1 +kβ2 (as in our conventional notation). It is straight-forward to see that given

any fixed bβ, there is a unique pair (pβ, wβ) that satisfies (F.14) and (F.15).

Define E(β) to be

E(β) =

(
−D1(pβ, wβ; pβ, wβ)

D(pβ, wβ; pβ, wβ))

)
· (pβ − wβ). (F.16)

The significance of this definition is that when Σβ is a local duopoly equilibrium, we must

have E(β) = 1: only then (F.16) will coincide with the firm’s FOC for price, as given in

(F.1).

In the rest of the proof, we will show that (i) limβ→0E(β) =∞, (ii) limβ→β̄ E(β) = 0 for a

positive β̄ which will be defined, and (iii) E(β) is continuous at any β ∈ (0, β̄). Proving these

three steps completes the proof because they imply that E(β∗) = 1 for some β∗ ∈ (0, β̄). It

is then straight-forward to verify that Σβ∗ satisfies all the conditions in Proposition F.5, and

therefore, it is a symmetric local duopoly equilibrium.

Proof for step (i) There are two multiplicands on the RHS of (F.16). We denote the

first one by f(β) and the second one by g(β). We will prove that limβ→0 f(β) = ∞, and

limβ→0 g(β) > 0. This would complete this step.

In file “el-case1”, we derive the closed-form expression for f(β):

f(β) =
2
(
a2m− am+ bβ − 1

)
(1− bβ) (a2m− am+ 2bβ − 2)

,

where a = 1− σ. This implies limβ→0E(β) =∞.

To finish this step, it remains to prove limβ→0 g(β) > 0 . Because m > m = 1
−c′(0)

, then

there exists a non-trivial subgame equilibrium Σ = (P,A) at m. (The proof is essentially

identical to the proof of Lemma C.1) Moreover, we choose Σ such that it satisfies the equation

c′(mw1 − k) = −1
m

.

Claim F.12. Σ could be chosen such that it satisfies c′(mw1 − k) = −1
m

.
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Proof. The proof is similar to the proof that we gave for (F.8) in Proposition F.5. For

completeness, we briefly repeat that argument here.

First, recall the expression that Proposition E.6 gives for the waiting cost of customers

in any non-trivial subgame equilibrium: the waiting cost at firm f in Σ is then equal to

c(mwf − k). Suppose c′(mw1 − k) = −1
m

does not hold. We then will show that firm 1

could choose another payment profile which increase its profit but does not change the rate

of customers that are served by firm 1 or firm 2. First, suppose that c′(mw1 − k) > −1
m

.

Then, firm 1 could increase its profit by decreasing wage by some sufficiently small ε > 0

and decreasing price by a positive ε′ < ε, while doing this so that the aggregate cost offered

to its customers does not change. Hence, the rate of the customers that firm 1 serves would

not change, but the firm’s commission fee would go up, and therefore, the firm’s profit. Let

the new payment profile of firm 1 be denoted by P′1, and let P′ = (P′1,P2). Observe that the

payment profile P′ induces a subgame equilibrium Σ′ which has exactly the same customer

composition as Σ. Therefore, Σ′ is non-trivial; this proves the claim.

If c′(mw1 − k) < −1
m

, then the same argument applies, but by increasing wage and price,

instead of decreasing them as above.

Let bf denote the aggregate cost of firm f in Σ. Observe that for any β, customers incur

the same waiting cost in Σβ and Σ, because c′(mw1 − k) = c′(mwβ1 − kβ) = −1
m

. However,

note that b1 < bβ1 holds for β sufficiently close to 0. The two latter facts together imply that

that p1 < pβ holds for β sufficiently close to 0.

We also prove that w1 > wβ holds for β sufficiently close to 0: because c′(mw1 − k) =

c′(mwβ1 − kβ) = −1
m

, and because kβ < k for β sufficiently close to 0.

We have shown that p1 < pβ and w1 > wβ hold for β sufficiently close to 0. Therefore,

we must have

lim
β→0

pβ − wβ > p1 − w1.

Consequently, limβ→0 g(β) > 0, and this step is complete.

Proof for step (ii) Consider the family of all symmetric subgame equilibrium with pay-

ment profiles ((p, w), (p, w)) such that p = w. Let b denote the infimum of the aggregate

cost that customers incur in this family. Define β = 1 − b. It is straight-forward to verify

that limβ→β g(β) = 0, i.e. as β approaches β, the commission fee in Σβ approaches 0.

To complete this step, it remains to show that limβ→β f(β) exists and is finite. Recall
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that

f(β) =

(
−D1(pβ, wβ; pβ, wβ)

D(pβ, wβ; pβ, wβ))

)
.

To ensure existence of the limit, we prove that f(β) is continuous. To ensure continuouity,

we choose m′ sufficiently close to m so that the β < 1−σ
2

. Under this assumption, the closed-

form expression for f(β) is computed in file “el-case1”. This assumption ensures that the

derivative on the RHS of the above equation exists for all β ≤ β, and therefore ensures the

continuity of f(β) for all such β. (We note that the continuity is ensured for much larger

m′, as the derivative exists for all β < σ, and possibly for larger β; but we make the stronger

assumption to keep the proof simple.)

We have established that limβ→β g(β) = 0, and that limβ→β f(β) exists and is finite. This

completes step (ii).

Proof for step (iii) To complete this step, we need to show that f(β) and g(β) are

continuous in the interval (0, β̄). We proved the claim for f(β) in step (ii). It remains to

prove the claim for g(β). Recall that g(β) = pβ − wβ, and observe that

pβ = β − c(c′−1(−1/m)),

wβ =
c′−1(−1/m) +D(bβ, bβ)

m
,

which are continuous functions in β.

Lemma F.13. There exists m′ such that for all m ∈ (m,m′), a unique monopoly equilibrium

and a unique symmetric duopoly equilibrium exist at m, and furthermore, p
duo

(m) > pmon(m)

and uC
duo

(m) < uC
mon

(m).

Proof. The existence and uniqueness of the equilibria is implied by Lemma F.10 and Lemma F.11.

It remains to prove that p
duo

(m) > pmon(m) and uC
duo

(m) < uC
mon

(m) hold.

To prove the theorem, we extend the domain of functions p
duo

(m), w
duo

(m), k
duo

(m) and

pmon(m), wmon(m), kmon(m) to [m,∞), so that their domain includes the point m, and define

the value of all these functions to be 0 at point m. In files “DE-sols” and “ME-sols” we show

that the limit of all of these six functions is 0 as m approaches m0. So, this extension is just

the natural continuous extension.

First, we prove p
duo

(m) > pmon(m). To this end, we define a function d(m) = p
duo

(m) −
pmon(m), and apply a derivative test on it at point m0. We will show that d(i)(m0) = 0
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for all positive integers i ≤ 3 and d(4)(m0) > 0,where the notation d(i)(m0) denotes the

i-th derivative of d with respect to m computed at m0. This derivative test implies that

the function d(m) is increasing at m0, i.e. there exists m′ such that d is increasing over

the interval (m,m′). Since d(0) = 0 by definition, then p
duo

(m) > pmon(m) must hold when

m ∈ (m,m′). The claim about the derivatives d(i) is proved in file “d”. There, we compute

the derivatives directly from the closed-form solutions for pmon(m) and p
duo

(m), which are

computed in files “ME-sols’ and “DE-sols”, respectively.

F.3 Proving that local equilibria are global equilibria

In the previous step of the proof (Subsection F.2) we showed that for any m ∈ (m,m′), there

exists a unique symmetric local duopoly equilibrium at m. In this step, the last step of the

proof, we show that there exists m′′ ∈ (m,m′) such that any symmetric local equilibrium in

the interval (m,m′) is also a (global) duopoly equilibrium. Setting m̂ = m′′ will then prove

the claim of the theorem.24 We do not fix the value of m′′ in advance; this value will be set

in the course of the proof.

We need one definition before presenting the proof. We say that a firm f has a standard

payment profile in the subgame equilibrium Σ = (P,A) if the condition

c′(mwf − k) =
−1

m

is satisfied. Intuitively, this conditon means that holding kf fixed, firm f has chosen price

and wage optimally. (Recall the proof of Claim F.12 where we saw that if c′(mwf −k) 6= −1
m

,

then firm f can choose a different price and wage to increase its profit, while serving the

same rate of customers as before.)

Given a subgame equilibrium Σ = (P,A), we say that a deviation Pf is a standard

deviation for firm f if Pf is a standard payment profile for firm f in Σ[P ], where P =

(Pf ,P−f ). This definition is important in proving that any local duopoly equilibrium is

also a (global) duopoly equilibrium: to prove this, without loss of generality, it sufficies to

prove that the standard deviations for firm f cannot increase its profit. More precisely, let

P = (Pf ,P−f ) denote the payment profile after the deviation of firm f . The idea is that

if Pf is not a standard deviation for f , then firm f can choose a standard deviation Pf

which increases her profit more than the deviation P f . This claim holds essentially by the

24We believe that any symmetric local duopoly equilibrium is also a (global) duopoly equilibrium, however,
proving the claim for the interval (m,m′′) seems to be significantly simpler.
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same argument that proves Claim F.12. This significantly simplifies the analysis, as it helps

to interpret the game played between the firms as a game in which the firms compete by

offering aggregate costs to customers, rather than offering a price to customers and a wage

to workers. The details will become clear in the course of this proof.

Fix m, and let the symmetric local duopoly equilibrium at m be denoted by Σ = (P,A),

with P = ((p1, w1), (p2, w2)) and customer composition k = (k1, k2). The duopoly equi-

librium is symmetric, and hence we let p = p1 = p2, w = w1 = w2, and k1 = k2 = k/2.

Therefore, the total rate of customers that join a firm in Σ is k. As usual, we use the variable

kf to denote the rate of customers who join firm f in Σ; so, kf = k/2. As usual, we let bf

denote the aggregate cost offered to customers at firm f .

Suppose that firm 1 makes a deviation after which the aggregate cost that it offers to

customers changes b#
1 = b1 − δ. We prove that such a deviation does not increase the profit

of firm 1, for any positive or negative δ. We can assume that the deviation made by firm 1 is

a standard deviation; this is without loss of generality: if the deviation is not standard, then

firm 1 can choose a new deviation which is standard and increases her profit more than the

non-standard deviation. (This follows from the same argument in the proof of Claim F.12).

We present the proof for the case of δ > 0 first. The case of δ < 0 is very similar, and

will be proved at the end. Let p#
1 , w

#
1 , k

#
1 respectively denote the price and wage offered by

firm 1, and the mass of customers that join firm 1 after her deviation. Also, let k#
2 denote

the total mass of customers who join firm 2 after firm 1’s deviation, and let k# = k#
1 + k#

2 .

Next, we will show that all the variables p#
1 , w

#
1 , k

#
1 , k

#
2 , k

# are uniquely determined once

δ is fixed. (Later in the proof, we will use this property to write these variables as a function

of δ.) It is straight-forward to compute k#
1 as a function of b#

1 : by our choice of m′, k#
1 is

the area of the shaded triangle in Figure 12, which could clearly be written as a function of

b#
1 . We use the market-clearing equation to show why k#

2 is uniquely determined by δ:

k#
1 + k̂2 = k#

1 +D(p2 + c(mw2 − k#
1 − k̂2), b#

1 ).

In the above equation, we have used the variable k̂2 to take the place of k#
2 . Observe that

the LHS of the above equation is strictly increasing in k̂2, but its RHS is decreasing in k̂2.

There exists a unique value of k̂2 that solves the above equation, which we called k#
2 . This

also implies that k# is uniquely determined by δ, since k# = k#
1 + k#

2 .

Because c′(mw#
1 − k#) = −1

m
, then w#

1 is also uniquely determined by δ, and so is p#
1 ,

75



because b#
1 = p#

1 + c(mw#
1 − k#). Moreover,

c′(mw#
1 − k#) = c′(mw1 − k) =

−1

m

implies p1 − p#
1 = δ.

The profit of firm 1 before and after the deviation, respectively, is

Π1 = k1 · (p1 − w1),

Π#
1 = k#

1 · (p
#
1 − w

#
1 ).

Next, we write Π#
1 in a slightly different form:

Π#
1 =

(
k1 + ∆[k1]

)
·
(
p1 − w1 −∆[p1] −∆[w1]

)
,

where

∆[k1] = k#
1 − k1,

∆[p1] = p1 − p#
1 = δ,

∆[w1] = w#
1 − w1.

Later on, we will see that

∆[k1],∆[p1],∆[w1] > 0.

In terms of these new variables, we can now write the inequality Π1 ≥ Π#
1 as

(k1 + ∆[k1]) · (∆[w1] + ∆[p1]) ≥ ∆[k1] · (p1 − w1). (F.17)

We will show that the above inequality holds for all δ > 0.

We start by providing a lower-bound for ∆[w1]. First, observe that w#
1 = c′−1(−1/m)+k#

m
.

To provide the promised lower-bound we will show that k#, when written as a function

of δ, is increasing and convex in δ. After proving this claim, we use the derivative of k#

with respect to δ at point δ = 0 to compute a lower-bound for w#
1 , which will turn into a

lower-bound for ∆[w1].

To make this argument precise, we use the notation k#(δ) to denote k# as a function of

δ. Similarly, we define functions b#
1 (δ), b#

2 (δ) to denote the values of b#
1 and b#

2 as functions

of δ. Let the interval [0, δ̄] denote the minimal interval that all possible values of δ belong
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to.

Claim F.14. k#(δ) is increasing and convex over [0, δ̄].

Proof. In file “ksharp-increasing” we compute d k#(δ)
d δ

by implicit differentiation from the

market-clearing equation with respect to δ. We compute

d k#(δ)

d δ
= − 1− b#

1 (δ)

(a− 1)a− (b#
2 (δ)− 1) · c′

(
mw#

2 − k#(δ)
) > 0,

where the inequality holds because 0 ≤ b#
1 (δ) < 1 and 0 < b#

2 (δ) ≤ 1 hold for all δ ∈ [0, δ̄].

To prove the convexity claim, in file “ksharp-convex” we compute d2 k#(δ)
(d δ)2

. The key point

is that

lim
δ→0

d2 k#(δ)

(d δ)2
=

d2 k#(δ)

(d δ)2

∣∣∣
δ=0

=
1

a− a2
> 0, (F.18)

holds for any m > m. First of all, this implies the convexity of k#(δ) at δ = 0. Second, we

will show that we can choose m sufficiently close to m such that d2 k#(δ)
(d δ)2

> 0 is guaranteed

to hold for all δ ∈ [0, δ̄]. The idea is choosing m sufficiently close to m so that δ̄ becomes

sufficiently close to 0. Convexity of k#(δ) at any δ ∈ [0, δ̄] would then be implied by the

continuity of d2 k#(δ)
(d δ)2

and the fact that (F.18) holds.

Choose ζ such that for any positive κ < ζ and any m > m, we have

d2 k#(κ)

(dκ)2
> 0.

Existence of such ζ > 0 is proved by investigating the closed-form expression for d2 k#(κ)
(dκ)2

, as

done in file “ksharp-convex”.

We can then choose m′′ such that for any m < m′′, δ̄(m) < ζ. This proves the claim.25

In the rest of the proof, we prove (F.17) by proving a stronger version of it. As we

discussed earlier, this stronger version is derived by writing a lower-bound for ∆[w1] = k#−k
m

.

Using Claim F.14, we can write

∆[w1] =
k#(δ)− k#(0)

m
≥ δ

m
·
(

d k#(δ)

d δ

∣∣∣
δ=0

)
(F.19)

25The fact that m is sufficiently small buys some technical simplicity. However, we believe that the
convexity claim still holds for larger m.
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We now write a stronger version of (F.17) using the above expression, while dividing both

sides of (F.17) by ∆[k1]:(
1 +

k1

∆[k1]

)
·
((

δ

m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ δ

)
≥ p1 − w1. (F.20)

Define ε = δ
1−a . In order to simplify (F.20), we also use the fact that

k1 =
xy

2
, (F.21)

∆[k1] = εy +
ε2y

2x
, (F.22)

where x = 1− b1−a
1−a , y = 1−b1

a
, and a = 1− σ, as illustrated in Figure 12 (This figure depicts

customers’ valuations using the unit square, similar to Figure 11). Computing the value of

∆[k1] in terms of x, y, ε is straight-forward, as shown in Figure 13.

Figure 12: The shaded area represents the customers who join firm 1.

We now can rewrite (F.20) in the following way(
1 +

xy/2

εy + ε2y
2x

)
·
((

δ

m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ δ

)
≥ p1 − w1,

which could be simplified to(
ε+

x

2 + ε
x

)
·
((

1− a
m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ 1− a

)
≥ p1 − w1. (F.23)
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Figure 13: ∆[k1] is the area of the trapezoid, and can be written in terms of x, y, ε.

To prove that the above inequality holds, we observe that the the first multiplicand on the

LHS is a function of ε, where as the second multiplicand is not. Therefore, to prove (F.23),

it suffices to prove the following: (i) The first multiplicand is an increasing function of ε, and

(ii) Equation (F.23) holds at ε = 0. These are proved in Steps (i) and (ii), respectively.

Step (i) We compute the derivative of the first multiplicand on the LHS of (F.23)

d
(
ε+ x

2+ ε
x

)
d ε

= 1− x2

(ε+ 2x)2
> 0,

which is always positive. This completes step (i).

Step (ii) First, we rewrite (F.23) as follows.(
δ +

x(1− a)

2 + δ
(1−a)x

)
·
((

1

m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ 1

)
≥ p1 − w1. (F.24)

To prove (F.23) for ε = 0, we instead prove (F.24) for δ = 0. Intuitively, (F.24) holds because

we assumed the given subgame equilibrium is a local duopoly equilibrium, and therefore for

sufficiently small δ > 0, firm 1’s deviation should not increase her profit. More precisely,

we demonstrate that when δ = 0, (F.24) in fact coincides with firm’s FOC that ensures no

(local) standard deviation is beneficial to the firm. To see why this holds, observe that when
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δ = 0, then (i) the term

(
δ + x(1−a)

2+ δ
(1−a)x

)
in (F.24) is just equal to

k#(δ)
d k#(δ)

d δ

∣∣∣
δ=0

,

and (ii) the term
((

1
m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ 1
)

is equal to

−d p#(δ)

d δ

∣∣∣
δ=0

+
dw#(δ)

d δ

∣∣∣
δ=0

.

This complete the proof for the case of δ > 0. It remains to address the case of δ < 0.

The proof for this case is almost identical. We briefly state the proof, skipping the steps that

are identical to the previous proof. We use the same variables that we used in the previous

proof. The variables ∆[k],∆[k1],∆[p1],∆[w1], are defined in a way that they are all positive.

Also, we define ε = −δ
1−a so that it is a positive quantity. To prove that firm 1’s profit after

deviation does not increase, we then have to show that

(k1 −∆[k1]) · (∆[w1] + ∆[p1]) ≤ ∆[k1] · (p1 − w1).

(This is the counterpart for (F.17)) Dividing both sides by ∆[k1], the above inequality can

be written as (
k1

∆[k1]

− 1

)
· (∆[w1] + ∆[p1]) ≤ p1 − w1.

Following the same proof steps as before, we can get the counterpart for inequality (F.23) as(
xy/2

εy − ε2y
2x

− 1

)
·
((

1− a
m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ 1− a

)
≤ p1 − w1,

or equivalently, (
x

2− ε
x

− ε
)
·
((

1− a
m
· d k#(δ)

d δ

∣∣∣
δ=0

)
+ 1− a

)
≤ p1 − w1. (F.25)

We prove the above inequality in two steps: (i) We show that the first multiplicand is

decreasing in ε, and (ii) We prove the inequality for ε = 0. For step (i), we compute the
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Figure 14: There are three cases for the set of customers served by a monopolist: Cases 1-3
from left to right.

derivative of the first multiplicand with respect to ε,

d
(

x
2− ε

x
− ε
)

d ε
=

x2

(ε− 2x)2
− 1 < 0,

where the inequality holds since ε < x. (Note that δ < 0 implies that ε < x) The proof for

step (ii) is identical to the proof for its counterpart in the case of δ > 0.

G Theorem 6.7

In this section, we provide a proof sketch for Theorem 6.7. The proof needs to consider

multiple cases, depending on the set of the customers served by the monopolist, demonstrated

by Figure 14. In this proof sketch, we are going to consider Case 1 only. In fact, one can show

that Case 3 never happens (the monopolist always servers less than half of the customers)

and therefore, the complete proof considers only one additional case, Case 2. In here, we

present the proof for Case 1; the proof for Case 2 is similar.

Our approach involves defining another planner, whom we call the double-monopolist,

whose goal is maximizing profit by posting a price and wage (p, w). The difference between

the double-monopolist and the monopolist is that the former owns two firms (as defined

previously in a duopoly) but uses the same payment profile at both firms, whereas the latter

owns only one firm while facing the same customers and workers as the double-monopolist.

The optimal solution to the double-monopolist’s problem is called the double-monopoly

equilibrium.

For any planner pl ∈ {mon, dm}, the optimal solution to the planner’s problem is denoted

by (p
pl
, w

pl
, k

pl
). For example, the optimal solution to the double-monopolist’s problem is

defined by (p
dm
, w

dm
, k

dm
). For pl = duo, p

duo
, w

duo
denote the price and wage at the symmetric

duopoly equilibrium, while k
duo

denotes the total rate of customers who request service in the
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duopoly equilibrium.

Consistent with our usual notation, we use the variable b to denote p + c(mw − k).

For example, bmon = pmon + c(mwmon − kmon). This quantity is also called the aggregate cost

that customers incur. Let the function D : R+ → [0, 1] determine the customers’ demand

function, i.e. D(b) is the rate of customers who request service when the aggregate cost

that a customer incurs at the firm is b. Similarly, and with slight abuse of notation, we use

D(b1, b2) to denote the rate of customers who join firm 1 when the aggregate costs at firms

1,2 respectively are b1, b2. Recall that this function is defined in Subsection E.1.

The proof involves two steps. In Step 1, we show that wmon < w
dm

, and in Step 2 we will

prove that w
dm
< w

duo
. We sketch the proof in each step below. A key fact that will be used

in the proof is that the following equations all hold:

c′(mwmon − kmon) = −1/m, (G.1)

c′(mw
duo
− k

duo
) = −1/m, (G.2)

c′(mw
dm
− k

dm
) = −1/m. (G.3)

We have proved the second equation in Subsection E.1. The proof for the first and third

equations are similar to the proof for (B.6). We do not repeat the proofs here. Intuitively,

these equations are saying that for a marginal increase of ε in the wage, the firm can increase

price by ε without changing the rate of customers who join. In other words, the marginal

rate of substitution between price and minus wage is equal to 1 on any iso-quant of the

customer’s payoff function, the function u(v) = v− p− c(i) for a customer with valuation v.

Proof sketch for Step 1. The proof is by contradiction. Suppose wmon > w
dm

. Then, by

(G.1) and (G.3), we must have kmon > k
dm

. For each planner, namely pl ∈ {mon, dm}, define

the adjusted price elasticity 26 of customers’ demand for that planner as

Epl = −
k′
pl
(p

pl
)

k
pl
(p

pl
)
· (ppl − wpl) = −

Dpl
′(b

pl
(p

pl
)) · b′(p

pl
)

Dpl(bpl(ppl
))

· (ppl − wpl), (G.4)

where the parameters in the above equation are defined as follows. For any planner pl, the

function k
pl
(p) denotes the rate of customers who join the firm as a function of the price

posted by the firm, p. (Wage is held fixed, its value being equal to its equilibrium value,

26Recall the definition of adjusted price elasticity from Subsection 6.2, where we also explain the rationale
behind this terminology.
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wpl.) Similarly, b
pl
(p) denotes the aggregate cost that customers face as a function of p. The

function Dpl(·) is defined as before. Note that all these functions depend on the value of pl,

and so it appears as a subscript.

The FOC for price implies that Epl = 1 should hold for all planners. To complete the

proof in this step, we will show that Edm > 1, which will be a contradiction. (Intuitively,

this would mean that planner dm can increase profit by reducing the price, which would be

a contradiction.)

A key step is observing that

k′
pl
(p

pl
) = Dpl

′(b
pl
(p

pl
)) · b′(p

pl
)

= Dpl
′(b

pl
(p

pl
)) ·

d(p
pl

+ c(mw
pl
− k

pl
))

d p

= Dpl
′(b

pl
(p

pl
)) ·
(

1 +
−1

m
· (−k′

pl
(p

pl
))

)
, (G.5)

where (G.5) holds by (G.1),(G.2), and (G.3). Solving for k′
pl
(p

pl
) implies that

k′
pl
(p

pl
) =

Dpl
′(b

pl
(p

pl
))

1−Dpl
′(b

pl
(p

pl
))/m

. (G.6)

We now use (G.6) to rewrite (G.4) as

Epl =

(
−
Dpl
′(b

pl
(p

pl
))

Dpl(bpl(ppl
))
· 1

1−Dpl
′(b

pl
(p

pl
))/m

)
· (p

pl
− w

pl
). (G.7)

Let us denote the first and second multiplicands on the RHS by fpl and gpl, respectively. We

will show that fdm ≥ fmon and gdm > gmon, which will imply that Edm > Emon, which is a

contradiction. Proving gdm > gmon is easy: we know that w
dm
< wmon holds by assumption.

On the other hand, because kmon > k
dm

holds, then we should also have b
dm
> bmon . (G.1) and

(G.3) then imply that p
dm
> pmon . Therefore, gdm > gmon.

To complete Step 1, it remains to show that fdm ≥ fmon. To this end, we first do a slight

abuse of notation and write fdm as a function of b (i.e. fdm(b), so that fdm(bdm) = fdm. Note

that the LHS of the equality denotes the value of the function evaluated at b = bdm, and the

RHS is a scalar denoting the value of fdm which was defined before). First, we show that

fdm(b) is an increasing function of b. This is done in file “wage-thm-case1-a”. Then, we find

a b∗ such Ddm(b∗) = Dmon(bmon). By monotonicity of the functions fdm(b) and Ddm(b) and the

fact that b
dm
> bmon , to prove the claim that fdm ≥ fmon, it suffices to prove fdm(b∗) ≥ fmon.
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This is what we show in files “wage-thm-case1-b” and “wage-thm-case1-c”.

Proof sketch for Step 2. In this step, we prove that w
dm
< w

duo
. Note that by (G.2) and

(G.3), we have

w
dm
< w

duo
⇔ k

dm
< k

duo
.

The proof is by contradiction. Suppose w
dm
> w

duo
, which also means k

dm
> k

duo
. Because

the former fact implies b
dm
< b

duo
, and also because of (G.2) and (G.3), p

dm
< p

duo
must hold

as well.

The rest of the argument in this step is summarized as follows. A standard payment

profile for the double-monopolist is a profile that satisfies (G.3). Similarly, a standard pay-

ment profile for a firm in a duopoly is a profile that satisfies (G.2). In the first part of

the argument, we will show that the adjusted price elasticity of the customers’ demand for

double-monopolist computed at a standard payment profile with aggregate cost b is increas-

ing in b. In the second part, we will show that the payment profile used in the duopoly

equilibrium is a standard payment profile for the double-monopolist, and that at this pay-

ment profile, the adjusted price elasticity of customers’ demand for the double-monopolist is

larger than the adjusted price elasticity of the customers’ demand for a firm in the duopoly

equilibrium (which is just equal to 1). This will be a contradiction, as the adjusted price

elasticity of customers’ demand for the double-monopolist computed at the double-monopoly

equilibrium is equal to 1.

To formalize the argument, we first write the adjusted price elasticity of the customers’

demand for the double-monopolist at a standard payment profile as a function of the cus-

tomers’ aggregate cost, b. For this, we use the notation (p
dm

(b), w
dm

(b)) to denote the double-

monopolist’s standard payment profile as a function of b. Recall the definition of adjusted

price elasticity from (G.4). Evaluated at the standard payment profile with aggregate cost

b, the adjusted price elasticity is equal to

Edm(b) = −
k′
dm

(p
dm

(b))

k
dm

(p
dm

(b))
· (p

dm
(b)− w

dm
(b)) = −Ddm

′(b) · b′(p
dm

(b))

Ddm(b)
· (p

dm
(b)− w

dm
(b)). (G.8)

Now, because we are working with a standard payment profile, we can use (G.7) to rewrite

(G.8) as follows:

Edm(b) =

(
−Ddm

′(b)

Ddm(b)
· 1

1−Ddm
′(b)/m

)
· (p

dm
(b)− w

dm
(b)). (G.9)
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There are two multiplicands on the RHS of (G.9). We denote these multiplicands as functions

of b, with the first and second multiplicand denoted as f(b), g(b), respectively. In Step 1 we

showed that g(b) is increasing in b. To complete the proof in this step, we just need to show

that f(b) is increasing in b. This would prove that Edm(b) is increasing in b.

In files “wage-thm-db-monotone-el-case1” and “wage-thm-db-monotone-el-case2”, we prove

that f(b) is increasing in b. These files correspond to separate cases concerning b, which are

defined in Figure 15. In the first and second file we consider Cases 1 and 2, respectively. In

each file we derive a closed-form expression for Edm(b).

Figure 15: From left to right: Case 1 and Case 2.

In the last part of the argument, we show that at any standard payment profile with

aggregate cost b, the adjusted price elasticity of the customers’ demand for the double-

monopolist is larger than the adjusted price elasticity of the customers’ demand for a firm

in the duopoly equilibrium. This will show that the promised contradiction holds.

First, note that for a fixed b, the standard payment profiles of the double monopolist and

a firm in the duopoly equilibrium should be identical, because of (G.2) and (G.3). Now, we

use (G.6) to compare the two price-elasticities, while noting the the second multiplicand on

the RHS (the term p
pl
−w

pl
) is equal for both planners. So, it remains to show that the first

multiplicand on the RHS is smaller for the double-monopolist. This is merely an algebraic

calculation, and is done in files “wage-thm-db-el1” and “wage-thm-db-el2”. These two files

prove the claim for two separate cases concerning b: Cases 1 and 2 defined in Figure 15.
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